The importance of considering **extreme** and rare events in environmental management

Ullrika Sahlin, Centre of Environmental and Climate Research

Lund University, Sweden

Ullrika.Sahlin@cec.lu.se

http://www.cec.lu.se/ullrika-sahlin

LUNVERSITY

LUND UNIVERSITY

What makes a decision?

- An agent
- Her values
- An idea of what is a good decision
- Decision alternatives
- Uncertainties in the outcomes of these alternatives

LUND UNIVERSITY

Outline

- Environmental management
- Learning & forecasting to make decisions
- Extreme events and uncertainty
- Consider extreme events in system and knowledge dimensions
- More than one scientific perspective on extreme events

Coastline erosion and sea level rise

Caroline Fredriksson and Hans Hansson, LTH. Aktuella Frågor 27 April 2017

- Large economic loss
- Threatens biodiversity and recreation
- Loss of protection against high sea levels
- Requires coordinated management

Environmental management

- Several decision makers
- Many people affected in different ways
- High values at stake
- Long term effects
- Irreversible effects
- Solutions requiring a sacrifice of another value
- Complex systems
- Large variability (i.e. inherent randomness in the system)
- Scientific uncertainty
- Need to communicate the limits of what we know
- Management urgent

Environmental management

- Several decision makers
- Many people affected in different ways
- High values at stake
- Long term effects
- Irreversible effects
- Solutions requiring a sacrifice of another value
- Complex systems
- Large variability (i.e. inherent randomness in the system)
- Scientific uncertainty
- Need to communicate the limits of what we know
- Management urgent

Clark et al 2001. Ecological forecasts: An emerging imperative. Science.

Spiegelhalter and Riesch. 2011. Don't know, can't know: embracing deeper uncertainties when analysing risks. Philosophical Transactions of the Royal Society.

Research type A Understanding and managing environmental problems

Research type B How to conceptualise, assess and find management solutions to environmental problems

Modified from Aven, Keynote lecture, Nordic Chapter Risk Conference, Lund, 2015.

Natural Science

Research type B How to conceptualise, assess and find management solutions to environmental problems

Research type A

Understanding and managing

environmental problems

Social science

Modified from Aven, Keynote lecture, Nordic Chapter Risk Conference, Lund, 2015.

Clark et al 2001. Ecological forecasts: An emerging imperative. Science.

Spiegelhalter and Riesch. 2011. Don't know, can't know: embracing deeper uncertainties when analysing risks. Philosophical Transactions of the Royal Society.

Values Perceptions Behaviour Cognitive bias & heuristics

...

On the board

- The DM is interested in uncertainty in the event A
- Uncertaninty in A is described using probability P(A|K)
- K is the knowledge
- $P(A | K) = P(A | \theta)P(\theta | K)$
- P(A|θ) "forecasting"
- P(θ|K) "learning"

Fishery managment

2126 M. Lindegren et al. Forecasting under climate change

Forecasting under climate change

Biodiversity by land-use management

1516

BIOLOGICAL CONSERVATION 141 (2008) 1505-1524

- Spatial planning
- Trade-offs and synergies
- Efficiency frontiers

Biodiversity by land-use management

1516

BIOLOGICAL CONSERVATION 141 (2008) 1505-1524

- Spatial planning
- Trade-offs and synergies
- Efficiency frontiers
- Uncertainty in outcomes

Expectation: Mean - a location Prevision - a quantity important for decisons

System dimension:

- Unlikely rare, low frequency
- Large consequence

Knowledge dimension:

- Unlikely low weight among possible outcomes, surprice in relation to central tendency
- Surprice large uncertainy due to lack of knowledge
- Unknown unknown the unforeseen

Probability- based thinking	P(A K)
Strength in knowledge	S(K)
Surprises (black swans)	K'

Taleb, N. 2007. The black swan : the impact of the highly improbable. Aven, T. 2013. Practical implications of the new risk perspectives. Reliability Engineering & System Safety 115:136-145. Considering extreme events when Learning & Forecasting is required to make Decisions robust to extreme events

Include extreme events in modelling

Short and long distance disperal

Include extreme events in modelling

Climate projections

Include extre

Climate projections

Your Area: Today (switch ×
← → C ③ www.climatechip.org/your-area-climate-data
Cincte CHIP
Home Your Area CHIPs Analysis Tools Resources About Us

Your Area: Today (switch to: Tomorrow)

Type a location in the left box below (e.g. "Delhi, India" or "29, 77" for lat/long) and click Search. Alternatively, simply scroll around and zoom the map below, then click on the desired location.

Crange markers indicate weather stations that have data for 90%+ of all days 1980-2013. Clicking a marker reveals more info.

Save this Graph as an Image

i.e. WBGT and UTCI, note that dew-point temperatures below 0 °C are often not reliable.

Orange markers indicate weather stations that have data for of all days 1980-2013. Clicking a marker reveals more info.

Save this Graph as an Image

Save this Graph as an Image

RCP 6.0 --- RCP 8.5 --- RCP 8.5 --- RCP 8.5 ----

Note: When interpreting charts that display dew-point temperature, or values derived from it, i.e. WBGT and UTCI, note that dew-point temperatures below 0 °C are often not reliable.

Monthly Distribution

Mean Temperature

Note: When interpreting charts that display dew-point temperature, or values derived from it, i.e. WBGT and UTCI, note that dew-point temperatures below 0 °C are often not reliable.

Save this Graph as an Image

Celsius

Include extre

Climate projections

Your Area: Tomorrow (switch to: Today)

Type a location in the left box below (e.g. "Delhi, India" or "29, 77" for lat/long) and click Search. Alternatively, simply scroll around and zoom the map below, then click on the desired location.

Note: When interpreting charts that display dew-point temperature, or values derived from it, i.e. WBGT and UTCI, note that dew-point temperatures below 0 °C are often not reliable.

Use statistical theory for extreme events

outcome

Use statistical theory for extreme events

outcome

Include extreme events in random processes

Illustration of population dynamic models that allow for heavy tails

Sean C. Anderson et al. PNAS 2017;114:3252-3257

©2017 by National Academy of Sciences

Ignoring heavy tails can underestimate risk

PNAS

©2017 by National Academy of Sciences

Our knowledge is seldom ideal to make decisions

Consdier extreme events in the knowledge dimension

- Statistical population
 - Sample mean: 24

29	13	10	22	45

- Statistical population
 - Sample mean: 24
- Analogy prediction
 - Friday & Maths: 13

29	13	10	22	45
Birds	Maths	Birds	Maths	Birds
Friday	Friday	Tuesday	Tuesday	Tuesday

- Statistical population
 - Sample mean: 24
- Analogy prediction
 - Friday & Maths: 13
- Just guess
 - Lower value: 10
 - Higher value: 100
 - Most likely value: 22

29	13	10	22	45
Birds	Maths	Birds	Maths	Birds
Friday	Friday	Tuesday	Tuesday	Tuesday

- Statistical population
 - Sample mean: 24
- Analogy prediction
 - Friday & Maths: 13
- Just guess
 - Lower value: 10
 - Higher value: 100
 - Most likely value: 22
 - 1% chance 200 sets are too few

LogT(2.84,0.578)

of visitors

- Statistical population
 - Sample mean: 24
- Analogy prediction
 - Friday & Maths: 13
- Just guess
 - Lower value: 10
 - Higher value: 100
 - Most likely value: 22
 - 1% chance 200 sets are too few

29	13	10	22	45
Birds	Maths	Birds	Maths	Birds
Friday	Friday	Tuesday	Tuesday	Tuesday

LogT(2.84,0.578)

of visitors

- Statistical population
 - Sample mean: 24
- Analogy prediction
 - Friday & Maths: 13
- A simple guess
 - Lower value: 10
 - Higher value: 100
 - Most likely value: 22

29	13	10	22	45
Birds	Maths	Birds	Maths	Birds
Friday	Friday	Tuesday	Tuesday	Tuesday

LogT(2.84,0.578)

Different types of uncertainty

Irreducable uncertainty

- Variability
- Inherent randomness
- Stochasticity
- Aleatory uncertainty

Reducable uncertainty

Relative

frequency

- Lack of knowledge
- Ignorance
- Incertitude
- Epistemic uncertainty

Personal

probability

Different types of uncertainty

Decision making under risk

- Maximise prevision taken over a relative frequency
- Risk aversion

Decision making under uncertainty

- Maximise prevision taken over probability representing our believes (personal probability)
- Cautionary principles

Personal

probability

Relative

frequency

- Apply robust decision criteria
- Adapt management
- Precautionary principle

Different types of uncertainty

Decision making under risk Decision making under uncertainty Decision making under deep uncertainty

Strength in knoweldge

Assess strenght in knowledge

Table 2: Example of quality indicators for scientific evidence (after Bowden, 2004).

Strength in knoweldge

			Indicators of	of evidence q	uality		
		Theoretical basis	Scientific method	Auditability	Calibration	Calibration	Objectivity
Quality rank	Very high	Well established theory	Best available practice: large sample; direct measure	Well documented trace to data	An exact fit to data	Independent measurement of sample variable	No discernable bias
	High	Accepted theory; high degree of consensus	Accepted reliable method; small sample; direct measure	Poor documented but traceable to data	Good fit to data	Independent measurement of high correlation variable	Weak bias
	Moderate	Accepted theory; low consensus	Accepted method; derived or surrogate data; analogue; limited reliability	Traceable to data with difficulty	Moderately well correlated with data	Validation measure not truly independent	Moderate bias
	Low	Preliminary theory	Preliminary method of unknown reliability	Weak and obscure link to data	Weak correlation to data	Weak indirect validation	Strong bias
	Very low	Crude speculation	No discernable rigour	No link back to data	No apparent correlation	No validation presented	Obvious bias

Adapt management

Klinke and Renn. 2002. A new approach to risk evaluation and management: Risk-based, precaution-based, and discourse-based strategies. Risk Analysis.

Broaden the uncertainty concept

Sword-Daniels et al. 2016. Embodied uncertainty: living with complexity and natural hazards. Journal of Risk Research:1-18.

The broadening of the concept over time

Broaden the uncertainty concept

Sword-Daniels et al. 2016. Embodied uncertainty: living with complexity and natural hazards. Journal of Risk Research:1-18.

Table 4. Maximum likelihood estimation of parameters for the GEV and Gumbel (ξ =0) model (with standard error within brackets), estimated 100-years return level relative mean sea level (with 95 % confidence interval within brackets), and estimated return period for the 1872 storm.

	Location, µ	Scale, σ	Shape, ξ	Estimated water level 100 years return period	Estimated return period 1872-storm
Skanör 1992–2015	85.9 (4.1)	19.1 (3.0)	0	174 (143–204)	3200 years
Klagshamn 1961–2015	85.3 (3.5)	23.3 (2.7)	-0.47 (0.1)	129 (125–144)	Exceeds the upper limit of distribution (135 cm)
Ystad 1886–1987	77.9 (1.8)	17.4 (1.3)	0	158 (144–171)	7000 years

Fredriksson, C et al. 2016, STATISTICAL ANALYSIS OF EXTREME SEA WATER LEVELS AT THE FALSTERBO PENINSULA, SOUTH SWEDEN. J. Water Management and research

