Application of Bayesian Networks in Integrated Water Resource Management

Hazel Indrani Govender

29th March 2017 Worskhop: Applications and Future Developments in Bayesian Networks, Lund University

Integrated water resource management

"Is a holistic approach that seeks to integrate the management of the physical environment within the broader socio-economic and political framework" (Claassen, 2013)

The Study Area: The uMngeni River Catchment KwaZulu-Natal, South Africa

http://www.roomsforafrica.com/dest/south-africa/kwazulu-natal.jsp

Important catchment

Strengths:

- Economic importance nationally
- Dams
- Labour
- Agriculture
- Forest plantations
- Ecotourism

Challenges:

- Inadequate water & sanitation
- Informal settlements
- Illegal discharges
- Eutrophication of dams
- Alien invasive species

Resource Quality Objectives (RQOs) in South Africa

Mg_R_EWR1: uMngeni River		
 EIS: LOW Highest scoring metrics were diversity of habitat types and features as well as the presence of rare and endangered riparian species. PES: C/D The presence of aggressive alien fish species and exotic vegetation species. Some decrease in base flows due to abstractions for agriculture. REC: C/D As the EIS was LOW no improvement was required. The C/D EcoStatus PES mainly due to non-flow related impacts and not representative of flow related problems in the reach. It was decided to exclude alien fish species from the assessment resulting in a PES of a C EC for fish and an instream PES of a C EC for which flow requirements were set. 	Component	PES & REC
	IHI Hydrology	В
	Physico chemical	В
	Fish	D (C)
	Invertebrates	С
	Instream	C/D (C)
	Riparian vegetation	C/D
	EcoStatus	C/D
	Instream IHI	С
	Riparian IHI	С
	EIS	LOW

Ecological Classification of water resources in South Africa

(O'Brien, 2015)

Aims of the project

- Assess ecological risk using the Resource Quality Objectives (RQOs) under different water management scenarios (for example)
 - Changes in dam operations -> water flows
 - Growth in agricultural development
 - Control of alien vegetation
- Use the Relative Risk Model to demonstrate the implementation of the proposed RQOs for the study area
- Use the BN-RRM to determine the trade-offs between use and protection scenarios to effectively manage water resources holistically

Relative Risk Model

- Suitable for catchment scale
- Regional and examines risk spatially
- Considers catchment complexity multiple sources, multiple stressors, multiple habitats, multiple endpoints
- Prioritise different regions of the catchment based on risk score

Risk Regions in the Study Area

11

Calculate the relative risks

Risk score_{RR} = $\Sigma_{endpoints}$ Stressor score_{RR} * Exposure_{RR} * Habitat score_{RR} * Effect_{endpoint}

- Risk per risk region Can compare risk regions, can aggregate over regions
- $RS_{endpoint} = \sum_{i} \sum_{j} \sum_{k} S_{ij} \cdot Exposure_{ijk} \cdot H_{ik} \cdot Effect_{jk,endpoint}$
- $RS = \sum_{endpoint} RS_{endpoint}$
- i risk regions, j source, k habitat

Bayesian Network – Conceptual Model

RRM.....BNs.....RQOs....ECs???

- Endpoints are expressions of specific RQO components
- BNs will determine the probability of risk to the different endpoints, relating to EC ($A \rightarrow F$) determine whether there will be improvement or deterioration as we work with different management scenarios.

How does it all come together?

BNs in Integrated water resource management

Concluding remarks

- Current and recent research in the uMngeni catchment sources of information and data to update BNs
- BNs in adaptive management to explore different management scenarios in an attempt to achieve balance between use and protection
- Final presentation of the model will make it easier for stakeholders to interpret various scenarios
- BNs easily presented to stakeholders due to its ability to communicate visually graphic in nature
- Make uncertainties explicit
- Contribute to the development of a database and online data management system with direct link to decision makers
- Guide implementation of RQOs and maintain acceptable ECs of water resources

(DWAF, 2002) Thanks for your attention!