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Bayesian Inference

expert info + data → complete picture

prior distribution + sample distribution → posterior distribution

f (θ) × f (x | θ) ∝ p(θ | x)
I Bayes’ Rule

Beta prior Binomial Beta posterior
distribution I conjugacy

p ∼ Beta(α(0), β(0)) s | p ∼ Binomial(n, p) p | s ∼ Beta(α(n), β(n))

I conjugate prior makes learning about parameter tractable,
just update hyperparameters: α(0)

→ α(n), β(0)
→ β(n)

I closed form for some inferences: E[p | s] = α(n)

α(n)+β(n)0.00
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Prior-Data Conflict

What if expert information and data tell different stories?

Prior-Data Conflict
I informative prior beliefs and trusted data

(sampling model correct, no outliers, etc.) are in conflict
I “[. . . ] the prior [places] its mass primarily on distributions in the

sampling model for which the observed data is surprising”
(Evans and Moshonov 2006)

I there are not enough data to overrule the prior
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Prior-Data Conflict: Example

I Bernoulli observations: 0/1 observations (failure/success)

I given: a set of n i.i.d. observations and strong prior information
I we are, e.g., interested in probability for success in next trial

Beta-Binomial Model
data : s | p ∼ Binomial(n, p)

conjugate prior: p | α(0), β(0)
∼ Beta(α(0), β(0))

posterior: p | α(n), β(n)
∼ Beta(α(n), β(n))

where s = number of successes in the n observed trials
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Reparametrisation of the Beta Distribution

I reparametrisation helps to understand effect of prior-data conflict:

n(0) = α(0) + β(0) , y(0) =
α(0)

α(0) + β(0)
, which are updated as

n(n) = n(0) + n , y(n) =
n(0)

n(0) + n
y(0) +

n
n(0) + n

·
s
n

y(0) = E[p] y(n) = E[p | s] ML estimator p̂n(0) = pseudocounts

E[p | s] = y(n) is a weighted average of E[p] and p̂!

Var[p | s] =
y(n)(1 − y(n))

n(n) + 1
decreases with n!
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Beta-Binomial Model (BBM)
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Canonical Conjugate Priors

Averaging property holds for all conjugate models (!)

(x1, . . . , xn) = x
iid
∼ canonical exponential family

f (x | θ) ∝ exp
{
〈ψ, τ(x)〉 − nb(ψ)

} [
ψ transformation of θ

]
(includes Binomial, Multinomial, Normal, Poisson, Exponential, . . . )

I conjugate prior: f (ψ | n(0), y(0)) ∝ exp
{
n(0)
[
〈ψ, y(0)

〉 − b(ψ)
]}

I (conjugate) posterior: f (ψ | n(0), y(0),x) ∝ exp
{
n(n)
[
〈ψ, y(n)

〉 − b(ψ)
]}

where y(n) =
n(0)

n(0) + n
· y(0) +

n
n(0) + n

·
τ(x)

n
and n(n) = n(0) + n

I n(0) determines spread and learning speed
I y(0) = prior expectation of τ(x)/n
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Imprecise / Interval Probability

I Averaging property holds for all conjugate models (!)
Can we mitigate this and still keep tractability?

I Prior f (p) is a collection of probability statements:∫ b
a f (p) dp = P(a ≤ p ≤ b)

How can we express uncertainty
about these probability statements?

I Add imprecision as new modelling dimension:
Sets of priors model uncertainty in probability statements
and allow to better model partial or vague information on p.

I Separate uncertainty within the model (probability statements)
from uncertainty about the model (how certain about statements)

I Can also be seen as systematic sensitivity analysis
or robust Bayesian approach.
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I Prior f (p) is a collection of probability statements:∫ b
a f (p) dp = P(a ≤ p ≤ b)

How can we express uncertainty
about these probability statements?

I Add imprecision as new modelling dimension:
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Sets of Prior Distributions

Uncertainty about probability statements
smaller sets = more precise probability statements

Lottery A
Number of winning tickets:

exactly known as 5 out of 100
I P(win) = 5/100

Lottery B
Number of winning tickets:

not exactly known, supposedly
between 1 and 7 out of 100
I P(win) = [1/100, 7/100]

Let hyperparameters (n(0), y(0)) vary in a set IΠ(0) I set of priorsM(0)

Sets of priors→ sets of posteriors by updating element by element:
the Generalized Bayes Rule (GBR Walley 1991) ensures coherence
(a consistency property)

Set of posteriorsM(n) via IΠ(n) =
{
(n(n), y(n)) : (n(0), y(0)) ∈ IΠ(0)

}
Bounds for inferences (point estimate, . . . ) by min/max over IΠ(0).
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Imprecise BBM with n(0) fixed

IDM (Walley 1996); Quaeghebeur and de Cooman (2005)
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Imprecise BBM with n(0) interval

Walley (1991, §5.4.3); Walter and Augustin (2009); Walter (2013)
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Sets of Nonparametric Survival Functions
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Example: Scaled Normal Data

Example: Scaled Normal Data
Data : x | µ ∼ N(µ, 1)

conjugate prior: µ | n(0), y(0)
∼ N(y(0), 1/n(0))

posterior: µ | n(n), y(n)
∼ N(y(n), 1/n(n)) (τ(x)/n = x̄)
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General Model Properties

Good inference properties (cf. other models based on sets of priors)
I n→∞

I y(n) stretch in IΠ(n)
→ 0 I precise inferences

I larger n(0) I larger IΠ(n) I more vague inferences
I larger range of y(0) in IΠ(0) I larger range of y(n) in IΠ(n)

I more vague inferences
Model very easy to handle:

I Hyperparameter set IΠ(0) defines set of priorsM(0)

I Hyperparameter set IΠ(n) defines set of posteriorsM(n)

I IΠ(0)
→ IΠ(n) is easy: n(n) = n(0) + n, y(n) = n(0)

n(0)+n y(0) + n
n(0)+n ·

τ(x)
n

I Often, optimising over (n(n), y(n)) ∈ IΠ(n) is also easy:
closed form solution for y(n) = posterior ‘guess’ for τ(x)

n (think: x̄)
when IΠ(0) has ‘nice’ shape
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I Hyperparameter set IΠ(n) defines set of posteriorsM(n)

I IΠ(0)
→ IΠ(n) is easy: n(n) = n(0) + n, y(n) = n(0)

n(0)+n y(0) + n
n(0)+n ·

τ(x)
n

I Often, optimising over (n(n), y(n)) ∈ IΠ(n) is also easy:
closed form solution for y(n) = posterior ‘guess’ for τ(x)

n (think: x̄)
when IΠ(0) has ‘nice’ shape
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Hyperparameter Set Shapes
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Hyperparameter Set Shapes

I Set shape is crucial modeling choice:
trade-off between model complexity and model behaviour

I IΠ(0) = n(0)
× [y(0), y(0)] (Walley 1996; Quaeghebeur and de Cooman 2005):

IΠ(n) = n(n)
× [y(n), y(n)] I optimise over [y(n), y(n)] only,

but no prior-data conflict sensitivity
I IΠ(0) = [n(0),n(0)] × [y(0), y(0)] (Walley 1991; Walter and Augustin 2009):

IΠ(n) have non-trivial forms (banana / spotlight), but prior-data
conflict sensitivity and closed form for min /max y(n) over IΠ(n).
For other inferences, R package luck implements optimisation
over IΠ(n) via box-constraint optimisation over IΠ(0)

I Other set shapes possible, but may be more difficult to handle
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Hyperparameter Set Shapes

Parameter set shape for strong prior-data agreement (Walter 2013, A.2)
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Summary

I Conjugate priors are a convenient tool for Bayesian inference
but there are some pitfalls

• Hyperparameters n(0), y(0) are easy to interpret and elicit
• Averaging property makes calculations simple, but leads to

inadequate model behaviour in case of prior-data conflict

I Sets of conjugate priors maintain advantages & mitigate issues
• Sets of posteriors adequately reflect vague prior information,

the amount of data, and prior-data conflict
• Hyperparameter set shape is important
• Reasonable choice: rectangular IΠ(0) = [n(0),n(0)] × [y(0), y(0)]:

“generalised iLUCK-models” (Walter and Augustin 2009; Walter 2013),
R package luck (Walter and Krautenbacher 2013)

• Bounds for prior hyperparameters (n(0), y(0))
are easy to interpret and elicit

• Additional imprecison in case of prior-data conflict
leads to cautious inferences if, and only if, caution is needed
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Other models using sets of priors top bottom

I Neighbourhood models
• set of distributions ‘close to’ a central distribution P0
• common in robust Bayesian approaches
• example: ε-contamination class: {P : P = (1 − ε)P0 + εQ,Q ∈ Q}
• not necessarily closed under Bayesian updating

I Density ratio class / interval of measures
• set of distributions by bounds for the density function f (ϑ):

Ml,u =
{

f (θ) : ∃c ∈ R>0 : l(θ) ≤ c f (θ) ≤ u(θ)
}

• posterior set is bounded by updated l(θ) and u(θ)
• u(θ)/l(θ) is constant under updating
I size of the set does not decrease with n
I too vague posterior inferences
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R package luck set shapes summary

I S4 implementation of the general canonical prior parameter
structure with rectangular sets IΠ(0) = [n(0),n(0)] × [y(0), y(0)]

I lean subclasses for concrete sample distributions
(currently implemented: scaled normal, exponential)

I available on R-Forge:

install.packages("luck",repos="http:
//R-Forge.R-project.org")

or

install.packages("http://download.r-forge.r-project.org/

src/contrib/luck_0.9.tar.gz",repos=NULL,type="source")

install.packages("luck", repos="http://R-Forge.R-project.org")
install.packages("luck", repos="http://R-Forge.R-project.org")
install.packages("http://download.r-forge.r-project.org/src/contrib/luck_0.9.tar.gz", repos = NULL, type = "source")
install.packages("http://download.r-forge.r-project.org/src/contrib/luck_0.9.tar.gz", repos = NULL, type = "source")
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R package luck set shapes summary

LuckModel

n0: matrix
y0: matrix
data: LuckModelData

show()
plot()
unionHdi()
...

ScaledNormalLuckModel

singleHdi()

ExponentialLuckModel

singleHdi()

...

singleHdi()

LuckModelData

tauN: matrix
rawData: matrix

show()

ScaledNormalData

show()

ExponentialData

show()

...

show()
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Strong Prior-Data Agreement Modelling
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