# **Bayesian Inference and Prior-Data Conflict**

Gero Walter

Eindhoven University of Technology, Eindhoven, NL

#### g.m.walter@tue.nl

TU/e Technische Universiteit Eindhoven University of Technology



2015-12-15





https://xkcd.com/1132







https://xkcd.com/1132

#### expert info + data $\rightarrow$ complete picture



| expert info        | + | data                            | $\rightarrow$ | complete picture                         |
|--------------------|---|---------------------------------|---------------|------------------------------------------|
| prior distribution | + | sample distribution             | $\rightarrow$ | posterior distribution                   |
| $f(\theta)$        | × | $f(\boldsymbol{x} \mid \theta)$ | œ             | $p(\theta \mid x)$<br><b>Bayes' Bule</b> |





| expert info                                       | + | data                                                                 | $\rightarrow$ | complete picture                                                                                               |
|---------------------------------------------------|---|----------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------|
| prior distribution                                | + | sample distribution                                                  | $\rightarrow$ | posterior distribution                                                                                         |
| $f(\theta)$                                       | × | $f(x \mid \theta)$                                                   | œ             | $p(\theta \mid x)$<br><b>Bayes' Rule</b>                                                                       |
| Beta prior                                        |   | Binomial distribution                                                |               | Beta posterior                                                                                                 |
| $p \sim \text{Beta}(\alpha^{(0)},\beta^{(0)})$    |   | $s \mid p \sim \text{Binomial}(n, p)$                                |               | $p \mid s \sim \text{Beta}(\alpha^{(n)}, \beta^{(n)})$                                                         |
| G<br>2<br>1<br>0<br>0.00 0.25 0.50 0.75 1.00<br>p |   | 0.20<br>0.15<br>0.05<br>0.00<br>0.05<br>0.00<br>0.5<br>10<br>15<br>s | 1-1-13        | 4 -<br>6 -<br>1 -<br>0.00 0.25 0.50 0.75 1.00<br>P<br>TU/e Technische Universiteit<br>University of Technology |

| expert info                                     | + | data                                         | $\rightarrow$ | complete picture                                       |
|-------------------------------------------------|---|----------------------------------------------|---------------|--------------------------------------------------------|
| prior distribution                              | + | sample distribution                          | $\rightarrow$ | posterior distribution                                 |
| f(	heta)                                        | × | $f(\boldsymbol{x} \mid \boldsymbol{\theta})$ | œ             | $p(\theta \mid x)$<br><b>Bayes' Rule</b>               |
| Beta prior                                      |   | Binomial distribution                        |               | Beta posterior                                         |
| $p \sim \text{Beta}(\alpha^{(0)}, \beta^{(0)})$ |   | $s \mid p \sim \text{Binomial}(n, p)$        |               | $p \mid s \sim \text{Beta}(\alpha^{(n)}, \beta^{(n)})$ |

- ► conjugate prior makes learning about parameter tractable, just update hyperparameters:  $\alpha^{(0)} \rightarrow \alpha^{(n)}, \beta^{(0)} \rightarrow \beta^{(n)}$
- ► closed form for some inferences:  $E[p | s] = \frac{\alpha^{(n)}}{\alpha^{(n)} + \beta^{(n)}}$



#### What if expert information and data tell different stories?



What if expert information and data tell different stories?

#### **Prior-Data Conflict**

- informative prior beliefs and trusted data (sampling model correct, no outliers, etc.) are in conflict
- "[...] the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising" (Evans and Moshonov 2006)
- there are not enough data to overrule the prior



Bernoulli observations: 0/1 observations (failure/success)



- Bernoulli observations: 0/1 observations (failure/success)
- given: a set of n i.i.d. observations and strong prior information



- Bernoulli observations: 0/1 observations (failure/success)
- given: a set of n i.i.d. observations and strong prior information
- we are, e.g., interested in probability for success in next trial



- Bernoulli observations: 0/1 observations (failure/success)
- ▶ given: a set of *n* i.i.d. observations and strong prior information
- ▶ we are, e.g., interested in probability for success in next trial

| Beta-Binomial Model                                 |                                    |   |                                     |  |  |
|-----------------------------------------------------|------------------------------------|---|-------------------------------------|--|--|
| data :   <i>s</i>   <i>p</i>                        |                                    |   | Binomial( <i>n</i> , <i>p</i> )     |  |  |
| conjugate prior: $p \mid \alpha^{(0)}, \beta^{(0)}$ |                                    | ~ | Beta( $\alpha^{(0)}, \beta^{(0)}$ ) |  |  |
| posterior:                                          | $p \mid \alpha^{(n)}, \beta^{(n)}$ | ~ | Beta( $\alpha^{(n)}, \beta^{(n)}$ ) |  |  |

where s = number of successes in the *n* observed trials



5/20

reparametrisation helps to understand effect of prior-data conflict:

$$n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \text{ which are updated as}$$
$$n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}$$



reparametrisation helps to understand effect of prior-data conflict:

$$n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \text{ which are updated as}$$
$$n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}$$
$$y^{(0)} = E[p]$$



reparametrisation helps to understand effect of prior-data conflict:

$$n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \text{ which are updated as}$$
$$n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}$$
$$y^{(0)} = \mathbf{E}[p] \quad y^{(n)} = \mathbf{E}[p \mid s]$$



reparametrisation helps to understand effect of prior-data conflict:

$$n^{(0)} = \alpha^{(0)} + \beta^{(0)}, \qquad y^{(0)} = \frac{\alpha^{(0)}}{\alpha^{(0)} + \beta^{(0)}}, \text{ which are updated as}$$
$$n^{(n)} = n^{(0)} + n, \qquad y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{s}{n}$$
$$y^{(0)} = \mathbf{E}[p] \quad y^{(n)} = \mathbf{E}[p \mid s] \quad \text{ML estimator } \hat{p}$$



reparametrisation helps to understand effect of prior-data conflict:





reparametrisation helps to understand effect of prior-data conflict:





reparametrisation helps to understand effect of prior-data conflict:







no conflict: prior  $n^{(0)} = 8$ ,  $y^{(0)} = 0.75$ data s/n = 12/16 = 0.75













no conflict: prior  $n^{(0)} = 8$ ,  $v^{(0)} = 0.75$ data s/n = 12/16 = 0.75 $n^{(n)} = 24, \ y^{(n)} = 0.75$ prior-data conflict: prior  $n^{(0)} = 8$ ,  $y^{(0)} = 0.25$ data s/n = 16/16 = 1



Averaging property holds for all conjugate models (!)

 $(x_1, ..., x_n) = x \stackrel{iid}{\sim}$  canonical exponential family  $f(x \mid \theta) \propto \exp \{ \langle \psi, \tau(x) \rangle - nb(\psi) \}$  [ $\psi$  transformation of  $\theta$ ] (includes Binomial, Multinomial, Normal, Poisson, Exponential, ...)



Averaging property holds for all conjugate models (!)

 $(x_1, \dots, x_n) = x \stackrel{iid}{\sim}$  canonical exponential family  $f(x \mid \theta) \propto \exp \{ \langle \psi, \tau(x) \rangle - nb(\psi) \}$  [ $\psi$  transformation of  $\theta$ ] (includes Binomial, Multinomial, Normal, Poisson, Exponential, ...)

► conjugate prior:  $f(\psi \mid n^{(0)}, y^{(0)}) \propto \exp\left\{n^{(0)}\left[\langle \psi, y^{(0)} \rangle - b(\psi)\right]\right\}$ 



Averaging property holds for all conjugate models (!)

 $(x_1, \dots, x_n) = x \stackrel{iid}{\sim}$  canonical exponential family  $f(x \mid \theta) \propto \exp \{ \langle \psi, \tau(x) \rangle - nb(\psi) \}$  [ $\psi$  transformation of  $\theta$ ] (includes Binomial, Multinomial, Normal, Poisson, Exponential, ...)

► conjugate prior:  $f(\psi \mid n^{(0)}, y^{(0)}) \propto \exp\left\{n^{(0)}\left[\langle \psi, y^{(0)} \rangle - b(\psi)\right]\right\}$ 

► (conjugate) posterior:  $f(\psi \mid n^{(0)}, y^{(0)}, x) \propto \exp\left\{n^{(n)}\left[\langle \psi, y^{(n)} \rangle - b(\psi)\right]\right\}$ 

where 
$$y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{\tau(x)}{n}$$
 and  $n^{(n)} = n^{(0)} + n$ 



Averaging property holds for all conjugate models (!)

 $(x_1, \dots, x_n) = x \stackrel{iid}{\sim}$  canonical exponential family  $f(x \mid \theta) \propto \exp \{ \langle \psi, \tau(x) \rangle - nb(\psi) \}$  [ $\psi$  transformation of  $\theta$ ] (includes Binomial, Multinomial, Normal, Poisson, Exponential, ...)

► conjugate prior:  $f(\psi \mid n^{(0)}, y^{(0)}) \propto \exp\left\{n^{(0)}\left[\langle \psi, y^{(0)} \rangle - b(\psi)\right]\right\}$ 

► (conjugate) posterior:  $f(\psi \mid n^{(0)}, y^{(0)}, x) \propto \exp\left\{n^{(n)}\left[\langle \psi, y^{(n)} \rangle - b(\psi)\right]\right\}$ 

where 
$$y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} \cdot y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{\tau(x)}{n}$$
 and  $n^{(n)} = n^{(0)} + n$ 

- n<sup>(0)</sup> determines spread and learning speed
- $y^{(0)} = \text{prior expectation of } \tau(x)/n$



Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?



- Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?
- Prior f(p) is a collection of probability statements:

$$\int_{a}^{b} f(p) \, \mathrm{d}p = P(a \le p \le b)$$

How can we express uncertainty about these probability statements?



- Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?
- Prior f(p) is a collection of probability statements:

$$\int_{a}^{b} f(p) \, \mathrm{d}p = P(a \le p \le b)$$

How can we express uncertainty about these probability statements?

 Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on p.



- Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?
- Prior f(p) is a collection of probability statements:

 $\int_{a}^{b} f(p) \, \mathrm{d}p = P(a \le p \le b)$ 

How can we express uncertainty about these probability statements?

- Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on p.
  - Separate uncertainty within the model (probability statements) from uncertainty about the model (how certain about statements)



- Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?
- Prior f(p) is a collection of probability statements:

$$\int_{a}^{b} f(p) \, \mathrm{d}p = P(a \le p \le b)$$

How can we express uncertainty about these probability statements?

- Add imprecision as new modelling dimension:
   Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on p.
- Separate uncertainty within the model (probability statements) from uncertainty about the model (how certain about statements)
- Can also be seen as systematic sensitivity analysis or robust Bayesian approach.



Uncertainty about probability statements

smaller sets = more precise probability statements

#### Lottery A

Number of winning tickets: exactly known as 5 out of 100  $\blacktriangleright$  P(win) = 5/100

#### Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 ► P(win) = [1/100, 7/100]



Uncertainty about probability statements

smaller sets = more precise probability statements

#### Lottery A Number of winning tickets: exactly known as 5 out of 100 $\blacktriangleright P(win) = 5/100$

#### Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 ► P(win) = [1/100, 7/100]

Let hyperparameters  $(n^{(0)}, y^{(0)})$  vary in a set

▶ set of priors  $\mathcal{M}^{(0)}$ 



Uncertainty about probability statements

smaller sets = more precise probability statements

| Lottery A                     |
|-------------------------------|
| Number of winning tickets:    |
| exactly known as 5 out of 100 |
| ► $P(win) = 5/100$            |

#### Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 ► P(win) = [1/100, 7/100]

Let hyperparameters  $(n^{(0)}, y^{(0)})$  vary in a set  $\blacktriangleright$  set of priors  $\mathcal{M}^{(0)}$ 

Sets of priors  $\rightarrow$  sets of posteriors by updating element by element: the Generalized Bayes Rule (GBR Walley 1991) ensures *coherence* (a consistency property)



Uncertainty about probability statements

smaller sets = more precise probability statements

| Lottery A                     |
|-------------------------------|
| Number of winning tickets:    |
| exactly known as 5 out of 100 |
| ► $P(win) = 5/100$            |

#### Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100 ► P(win) = [1/100, 7/100]

Let hyperparameters  $(n^{(0)}, y^{(0)})$  vary in a set  $\blacktriangleright$  set of priors  $\mathcal{M}^{(0)}$ 

Sets of priors  $\rightarrow$  sets of posteriors by updating element by element: the Generalized Bayes Rule (GBR Walley 1991) ensures *coherence* (a consistency property)

Set of posteriors  $\mathcal{M}^{(n)}$  via  $= \{(n^{(n)}, y^{(n)}): (n^{(0)}, y^{(0)}) \in \}$ Bounds for inferences (point estimate, ...) by min/max over



no conflict:

prior  $n^{(0)} = 8$ ,  $y^{(0)} \in [0.7, 0.8]$ data s/n = 12/16 = 0.75





























## **Sets of Nonparametric Survival Functions**



(joint work with Louis Aslett and Frank Coolen)



# Example: Scaled Normal DataData : $x \mid \mu$ ~ $N(\mu, 1)$ conjugate prior: $\mu \mid n^{(0)}, y^{(0)}$ ~ $N(y^{(0)}, 1/n^{(0)})$ posterior: $\mu \mid n^{(n)}, y^{(n)}$ ~ $N(y^{(n)}, 1/n^{(n)})$



#### **Example: Scaled Normal Data**



▶  $n \to \infty$ 



•  $n \to \infty$  •  $y^{(n)}$  stretch in  $\to 0$ 



▶  $n \to \infty$  ▶  $y^{(n)}$  stretch in  $\to 0$  ▶ precise inferences



- ▶  $n \to \infty$  ▶  $y^{(n)}$  stretch in  $\to 0$  ▶ precise inferences
- ▶ larger  $n^{(0)}$  ▶ larger

more vague inferences



- ▶  $n \to \infty$  ▶  $y^{(n)}$  stretch in  $\rightarrow 0$  ▶ precise inferences
- ▶ larger  $n^{(0)}$  ▶ larger
- larger range of  $y^{(0)}$  in

- more vague inferences
- larger range of  $y^{(n)}$  in
  - more vague inferences



- ▶  $n \to \infty$  ▶  $y^{(n)}$  stretch in  $\rightarrow 0$  ▶ precise inferences
- ▶ larger  $n^{(0)}$  ▶ larger
- larger range of  $y^{(0)}$  in

- more vague inferences
- larger range of  $y^{(n)}$  in
  - more vague inferences

Model very easy to handle:

defines set of priors  $\mathcal{M}^{(0)}$ Hyperparameter set



- $n \to \infty$   $y^{(n)}$  stretch in
- ▶ larger  $n^{(0)}$  ▶ larger
- larger range of  $y^{(0)}$  in

 $\rightarrow 0$  > precise inferences

- more vague inferences
- larger range of  $y^{(n)}$  in

more vague inferences

Model very easy to handle:

- Hyperparameter set
- Hyperparameter set

defines set of priors  $\mathcal{M}^{(0)}$ 

defines set of posteriors  $\mathcal{M}^{(n)}$ 



- ▶  $n \to \infty$  ▶  $y^{(n)}$  stretch in
- ▶ larger  $n^{(0)}$  ▶ larger
- larger range of  $y^{(0)}$  in

 $\rightarrow 0$  > precise inferences

- more vague inferences
- larger range of  $y^{(n)}$  in
  - more vague inferences

Model very easy to handle:

- defines set of priors  $\mathcal{M}^{(0)}$ Hyperparameter set
- Hyperparameter set

defines set of posteriors  $\mathcal{M}^{(n)}$ 

• 
$$\rightarrow$$
 is easy:  $n^{(n)} = n^{(0)} + n$ ,  $y^{(n)} = \frac{n^{(0)}}{n^{(0)} + n} y^{(0)} + \frac{n}{n^{(0)} + n} \cdot \frac{\tau(x)}{n}$ 



- ▶  $n \to \infty$  ▶  $y^{(n)}$  stretch in  $\rightarrow 0$  ▶ precise inferences
- ▶ larger  $n^{(0)}$  ▶ larger
- larger range of  $y^{(0)}$  in

- more vague inferences
- larger range of  $y^{(n)}$  in
  - more vague inferences

Model very easy to handle:

- Hyperparameter set defines set of priors  $\mathcal{M}^{(0)}$
- Hyperparameter set defines set of posteriors  $\mathcal{M}^{(n)}$

 $\rightarrow$  is easy:  $n^{(n)} = n^{(0)} + n$ ,  $y^{(n)} = \frac{n^{(0)}}{r^{(0)} + n} y^{(0)} + \frac{n}{r^{(0)} + n} \cdot \frac{\tau(x)}{n}$ 

• Often, optimising over  $(n^{(n)}, y^{(n)}) \in$  is also easy: closed form solution for  $y^{(n)}$  = posterior 'guess' for  $\frac{\tau(x)}{r}$  (think:  $\bar{x}$ ) when has 'nice' shape









 Set shape is crucial modeling choice: trade-off between model complexity and model behaviour



- Set shape is crucial modeling choice: trade-off between model complexity and model behaviour
- ► =  $n^{(0)} \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$  (Walley 1996; Quaeghebeur and de Cooman 2005): =  $n^{(n)} \times [\underline{y}^{(n)}, \overline{y}^{(n)}]$  ► optimise over  $[\underline{y}^{(n)}, \overline{y}^{(n)}]$  only, but no prior-data conflict sensitivity



- Set shape is crucial modeling choice: trade-off between model complexity and model behaviour
- ► =  $n^{(0)} \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$  (Walley 1996; Quaeghebeur and de Cooman 2005): =  $n^{(n)} \times [\underline{y}^{(n)}, \overline{y}^{(n)}]$  ► optimise over  $[\underline{y}^{(n)}, \overline{y}^{(n)}]$  only, but no prior-data conflict sensitivity

=  $[\underline{n}^{(0)}, \overline{n}^{(0)}] \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$  (Walley 1991; Walter and Augustin 2009):

have non-trivial forms (banana / spotlight), but prior-data conflict sensitivity and closed form for min / max  $y^{(n)}$  over . For other inferences, **R** package luck implements optimisation over via box-constraint optimisation over



- Set shape is crucial modeling choice: trade-off between model complexity and model behaviour
- ► =  $n^{(0)} \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$  (Walley 1996; Quaeghebeur and de Cooman 2005): =  $n^{(n)} \times [\underline{y}^{(n)}, \overline{y}^{(n)}]$  ► optimise over  $[\underline{y}^{(n)}, \overline{y}^{(n)}]$  only, but no prior-data conflict sensitivity

 $= [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$ (Walley 1991; Walter and Augustin 2009):

have non-trivial forms (banana / spotlight), but prior-data conflict sensitivity and closed form for  $\min / \max y^{(n)}$  over . For other inferences, **R** package luck implements optimisation over via box-constraint optimisation over

Other set shapes possible, but may be more difficult to handle



#### Parameter set shape for strong prior-data agreement (Walter 2013, A.2)



#### Parameter set shape for strong prior-data agreement (Walter 2013, A.2)



### Summary

- Conjugate priors are a convenient tool for Bayesian inference but there are some pitfalls
  - Hyperparameters  $n^{(0)}$ ,  $y^{(0)}$  are easy to interpret and elicit
  - Averaging property makes calculations simple, but leads to inadequate model behaviour in case of prior-data conflict



## Summary

- Conjugate priors are a convenient tool for Bayesian inference but there are some pitfalls
  - Hyperparameters  $n^{(0)}$ ,  $y^{(0)}$  are easy to interpret and elicit
  - Averaging property makes calculations simple, but leads to inadequate model behaviour in case of prior-data conflict
- Sets of conjugate priors maintain advantages & mitigate issues
  - Sets of posteriors adequately reflect vague prior information, the amount of data, and prior-data conflict
  - Hyperparameter set shape is important
  - Reasonable choice: rectangular  $= [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$ : "generalised iLUCK-models" (Walter and Augustin 2009; Walter 2013), **R** package luck (Walter and Krautenbacher 2013)
  - Bounds for prior hyperparameters (n<sup>(0)</sup>, y<sup>(0)</sup>) are easy to interpret and elicit
  - Additional imprecison in case of prior-data conflict leads to cautious inferences if, and only if, caution is needed



### **References I**

Evans, M. and H. Moshonov (2006). "Checking for Prior-Data Conflict". In: *Bayesian Analysis* 1, pp. 893–914. URL: http://projecteuclid.org/euclid.ba/1340370946.
Quaeghebeur, E. and G. de Cooman (2005). "Imprecise probability models for inference in exponential families". In: *ISIPTA '05. Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications*. Ed. by F. Cozman, R. Nau, and T. Seidenfeld. Manno: SIPTA, pp. 287–296. URL:

http://leo.ugr.es/sipta/isipta05/proceedings/
papers/s019.pdf.

- Walley, P. (1991). *Statistical Reasoning with Imprecise Probabilities*. London: Chapman and Hall.
- Walley, P. (1996). "Inferences from multinomial data: Learning about a bag of marbles". In: *Journal of the Royal Statistical Society, Series B* 58.1, pp. 3–34.



Walter, G. (2013). "Generalized Bayesian Inference under Prior-Data Conflict". PhD thesis. Department of Statistics, LMU Munich. URL: http://edoc.ub.uni-muenchen.de/17059/.
Walter, G. and T. Augustin (2009). "Imprecision and Prior-data Conflict in Generalized Bayesian Inference". In: *Journal of Statistical Theory and Practice* 3, pp. 255–271. DOI: 10.1080/15598608.2009.10411924.
Walter, G. and N. Krautenbacher (2013). luck: **R** package for

Generalized iLUCK-models. URL:

http://luck.r-forge.r-project.org/.



- Neighbourhood models
  - set of distributions 'close to' a central distribution P<sub>0</sub>
  - common in robust Bayesian approaches
  - example:  $\varepsilon$ -contamination class: { $P : P = (1 \varepsilon)P_0 + \varepsilon Q, Q \in Q$ }
  - not necessarily closed under Bayesian updating
- Density ratio class / interval of measures
  - set of distributions by bounds for the density function  $f(\vartheta)$ :

$$\mathcal{M}_{l,u} = \left\{ f(\theta) : \exists c \in \mathbb{R}_{>0} : l(\theta) \le cf(\theta) \le u(\theta) \right\}$$

- posterior set is bounded by updated  $l(\theta)$  and  $u(\theta)$
- $u(\theta)/l(\theta)$  is constant under updating
  - size of the set does not decrease with n
  - too vague posterior inferences



- ► S4 implementation of the general canonical prior parameter structure with rectangular sets  $= [\underline{n}^{(0)}, \overline{n}^{(0)}] \times [\underline{y}^{(0)}, \overline{y}^{(0)}]$
- lean subclasses for concrete sample distributions (currently implemented: scaled normal, exponential)
- available on R-Forge:

```
install.packages("luck",repos="http:
//R-Forge.R-project.org")
```

#### or

```
install.packages("http://download.r-forge.r-project.org/
src/contrib/luck_0.9.tar.gz", repos=NULL, type="source")
```





▲ summary



# Strong Prior-Data Agreement Modelling 💿



