Bayesian Inference and Prior-Data Conflict

Gero Walter

Eindhoven University of Technology, Eindhoven, NL

Bayesian Inference

DID THE SUN JUST EXPLODE?
 (T TS NGOHT, SO WERE NOT SURE.)

THIS NEIRINO DETECTOR MEASURES WHEETHER THE SUN HAS GONE NOVA.

Bayesian Inference

FREQUENTIST STATISTCIAN:
THE PROBABILTY OF THIS RESULT HAPPENING BY CHANCE $15 \frac{1}{36}=0.027$. SNCE $P<0.05$, I CONCUDE THAT THE SUN HAS EXPLDDED.

Bayesian Inference

expert info
 $+$
 data
 \rightarrow complete picture

Bayesian Inference

expert info $+\quad$ data \rightarrow complete picture

prior distribution + sample distribution \rightarrow posterior distribution

$$
\begin{aligned}
f(\theta) & f(\boldsymbol{x} \mid \theta)
\end{aligned} \quad \propto p(\theta \mid \boldsymbol{x})
$$

Bayesian Inference

expert info data \rightarrow complete picture
prior distribution + sample distribution \rightarrow posterior distribution

$$
f(\theta) \quad \times \quad f(\boldsymbol{x} \mid \theta) \quad \propto \quad p(\theta \mid x)
$$

- Bayes' Rule

Binomial
distribution
$s \mid p \sim \operatorname{Binomial}(n, p)$

Bayesian Inference

expert info data \rightarrow complete picture
prior distribution + sample distribution \rightarrow posterior distribution

$$
f(\theta) \quad \times \quad f(\boldsymbol{x} \mid \theta) \quad \propto \quad p(\theta \mid x)
$$

- Bayes' Rule

Beta prior
Binomial
distribution
$p \sim \operatorname{Beta}\left(\alpha^{(0)}, \beta^{(0)}\right) \quad s \mid p \sim \operatorname{Binomial}(n, p)$

Bayesian Inference

expert info data \rightarrow complete picture
prior distribution + sample distribution \rightarrow posterior distribution

$$
f(\theta) \quad \times \quad f(\boldsymbol{x} \mid \theta) \quad \propto \quad p(\theta \mid \boldsymbol{x})
$$

Beta prior
$p \sim \operatorname{Beta}\left(\alpha^{(0)}, \beta^{(0)}\right)$

$s \mid p \sim \operatorname{Binomial}(n, p)$

- Bayes' Rule Beta posterior
- conjugacy
$p \mid s \sim \operatorname{Beta}\left(\alpha^{(n)}, \beta^{(n)}\right)$

TU/e

Bayesian Inference

expert info data \rightarrow complete picture
prior distribution + sample distribution \rightarrow posterior distribution

$$
f(\theta) \quad \times \quad f(\boldsymbol{x} \mid \theta) \quad \propto \quad p(\theta \mid \boldsymbol{x})
$$

Beta prior
Binomial
distribution
$p \sim \operatorname{Beta}\left(\alpha^{(0)}, \beta^{(0)}\right) \quad s \mid p \sim \operatorname{Binomial}(n, p)$

- Bayes' Rule

Beta posterior

- conjugacy
$p \mid s \sim \operatorname{Beta}\left(\alpha^{(n)}, \beta^{(n)}\right)$
- conjugate prior makes learning about parameter tractable, just update hyperparameters: $\quad \alpha^{(0)} \rightarrow \alpha^{(n)}, \beta^{(0)} \rightarrow \beta^{(n)}$
- closed form for some inferences: $\mathrm{E}[p \mid s]=\frac{\alpha^{(n)}}{\alpha^{(n)}+\beta^{(n)}}$

Prior-Data Conflict

What if expert information and data tell different stories?

Prior-Data Conflict

What if expert information and data tell different stories?

Prior-Data Conflict

- informative prior beliefs and trusted data (sampling model correct, no outliers, etc.) are in conflict
* "[...] the prior [places] its mass primarily on distributions in the sampling model for which the observed data is surprising"
(Evans and Moshonov 2006)
- there are not enough data to overrule the prior

Prior-Data Conflict: Example

- Bernoulli observations: 0/1 observations (failure/success)

Prior-Data Conflict: Example

- Bernoulli observations: 0/1 observations (failure/success)
- given: a set of n i.i.d. observations and strong prior information

Prior-Data Conflict: Example

- Bernoulli observations: 0/1 observations (failure/success)
- given: a set of n i.i.d. observations and strong prior information
- we are, e.g., interested in probability for success in next trial

Prior-Data Conflict: Example

- Bernoulli observations: 0/1 observations (failure/success)
- given: a set of n i.i.d. observations and strong prior information
- we are, e.g., interested in probability for success in next trial

Beta-Binomial Model

data:	$s \mid p$	$\sim \operatorname{Binomial}(n, p)$
conjugate prior:	$p \mid \alpha^{(0)}, \beta^{(0)} \sim \operatorname{Beta}\left(\alpha^{(0)}, \beta^{(0)}\right)$	
posterior:	$p \mid \alpha^{(n)}, \beta^{(n)} \sim \operatorname{Beta}\left(\alpha^{(n)}, \beta^{(n)}\right)$	

where $s=$ number of successes in the n observed trials

Reparametrisation of the Beta Distribution

- reparametrisation helps to understand effect of prior-data conflict:

$$
\begin{array}{ll}
n^{(0)}=\alpha^{(0)}+\beta^{(0)}, & y^{(0)}=\frac{\alpha^{(0)}}{\alpha^{(0)}+\beta^{(0)}}, \quad \text { which are updated as } \\
n^{(n)}=n^{(0)}+n, & y^{(n)}=\frac{n^{(0)}}{n^{(0)}+n} y^{(0)}+\frac{n}{n^{(0)}+n} \cdot \frac{s}{n}
\end{array}
$$

Reparametrisation of the Beta Distribution

- reparametrisation helps to understand effect of prior-data conflict:

$$
\begin{gathered}
n^{(0)}=\alpha^{(0)}+\beta^{(0)}, \\
n^{(n)}=n^{(0)}+n, \quad y^{(0)}=\frac{\alpha^{(0)}}{\alpha^{(0)}+\beta^{(0)}}, \quad \text { which are updated as } \\
y^{(n)}=\frac{n^{(0)}}{n^{(0)}+n} y^{(0)}+\frac{n}{n^{(0)}+n} \cdot \frac{s}{n} \\
y^{(0)}=\mathrm{E}[p]
\end{gathered}
$$

Reparametrisation of the Beta Distribution

- reparametrisation helps to understand effect of prior-data conflict:

$$
\begin{gathered}
n^{(0)}=\alpha^{(0)}+\beta^{(0)}, \\
n^{(n)}=n^{(0)}+n,
\end{gathered}, \begin{aligned}
& y^{(0)}=\frac{\alpha^{(0)}}{\alpha^{(0)}+\beta^{(0)}}, \quad \text { which are updated as } \\
& y^{(n)}=\frac{n^{(0)}}{n^{(0)}+n} y^{(0)}+\frac{n}{n^{(0)}+n} \cdot \frac{s}{n} \\
& y^{(0)}=\mathrm{E}[p] \quad y^{(n)}=\mathrm{E}[p \mid s]
\end{aligned}
$$

Reparametrisation of the Beta Distribution

- reparametrisation helps to understand effect of prior-data conflict:

$$
\begin{aligned}
& n^{(0)}=\alpha^{(0)}+\beta^{(0)}, \quad y^{(0)}=\frac{\alpha^{(0)}}{\alpha^{(0)}+\beta^{(0)}}, \quad \text { which are updated as } \\
& n^{(n)}=n^{(0)}+n, \\
& \begin{array}{l}
y^{(n)}=\frac{n^{(0)}}{n^{(0)}+n} y^{(0)}+\frac{n}{n^{(0)}+n} \cdot \frac{s}{n} \\
y^{(0)}=\mathrm{E}[p] \quad y^{(n)}=\mathrm{E}[p \mid s] \quad \text { ML estimator } \hat{p}
\end{array}
\end{aligned}
$$

Reparametrisation of the Beta Distribution

- reparametrisation helps to understand effect of prior-data conflict:

Reparametrisation of the Beta Distribution

- reparametrisation helps to understand effect of prior-data conflict:

$\mathrm{E}[p \mid s]=y^{(n)}$ is a weighted average of $\mathrm{E}[p]$ and \hat{p} !

Reparametrisation of the Beta Distribution

- reparametrisation helps to understand effect of prior-data conflict:

$\mathrm{E}[p \mid s]=y^{(n)}$ is a weighted average of $\mathrm{E}[p]$ and \hat{p} !

$$
\operatorname{Var}[p \mid s]=\frac{y^{(n)}\left(1-y^{(n)}\right)}{n^{(n)}+1} \text { decreases with } n!
$$

Beta-Binomial Model (BBM)

no conflict:

prior $n^{(0)}=8, y^{(0)}=0.75$
data $s / n=12 / 16=0.75$

Beta-Binomial Model (BBM)

no conflict:

prior $n^{(0)}=8, y^{(0)}=0.75$
data $s / n=12 / 16=0.75$
$n^{(n)}=24, y^{(n)}=0.75$

Beta-Binomial Model (BBM)

no conflict:

prior $n^{(0)}=8, y^{(0)}=0.75$
data $s / n=12 / 16=0.75$
$n^{(n)}=24, y^{(n)}=0.75$
prior-data conflict:
prior $n^{(0)}=8, y^{(0)}=0.25$
data $s / n=16 / 16=1$

TU/e

Beta-Binomial Model (BBM)

no conflict:

prior $n^{(0)}=8, y^{(0)}=0.75$
data $s / n=12 / 16=0.75$
$n^{(n)}=24, y^{(n)}=0.75$
prior-data conflict:
prior $n^{(0)}=8, y^{(0)}=0.25$
data $s / n=16 / 16=1$

TU/e

Canonical Conjugate Priors

Averaging property holds for all conjugate models (!)
$\left(x_{1}, \ldots, x_{n}\right)=x \stackrel{i i d}{\sim}$ canonical exponential family

$$
f(x \mid \theta) \propto \exp \{\langle\psi, \tau(\boldsymbol{x})\rangle-n b(\psi)\} \quad[\psi \text { transformation of } \theta]
$$

(includes Binomial, Multinomial, Normal, Poisson, Exponential, ...)

Canonical Conjugate Priors

Averaging property holds for all conjugate models (!)
$\left(x_{1}, \ldots, x_{n}\right)=x \stackrel{i i d}{\sim}$ canonical exponential family

$$
f(x \mid \theta) \propto \exp \{\langle\psi, \tau(x)\rangle-n b(\psi)\} \quad[\psi \text { transformation of } \theta]
$$

(includes Binomial, Multinomial, Normal, Poisson, Exponential, ...)

- conjugate prior:

$$
f\left(\psi \mid n^{(0)}, y^{(0)}\right) \quad \propto \exp \left\{n^{(0)}\left[\left\langle\psi, y^{(0)}\right\rangle-b(\psi)\right]\right\}
$$

Canonical Conjugate Priors

Averaging property holds for all conjugate models (!)
$\left(x_{1}, \ldots, x_{n}\right)=x \stackrel{i i d}{\sim}$ canonical exponential family

$$
f(\boldsymbol{x} \mid \theta) \propto \exp \{\langle\psi, \tau(\boldsymbol{x})\rangle-n b(\psi)\} \quad[\psi \text { transformation of } \theta]
$$

(includes Binomial, Multinomial, Normal, Poisson, Exponential, ...)

- conjugate prior:

$$
f\left(\psi \mid n^{(0)}, y^{(0)}\right) \quad \propto \exp \left\{n^{(0)}\left[\left\langle\psi, y^{(0)}\right\rangle-b(\psi)\right]\right\}
$$

- (conjugate) posterior: $f\left(\psi \mid n^{(0)}, y^{(0)}, \boldsymbol{x}\right) \propto \exp \left\{n^{(n)}\left[\left\langle\psi, y^{(n)}\right\rangle-b(\psi)\right]\right\}$
where $y^{(n)}=\frac{n^{(0)}}{n^{(0)}+n} \cdot y^{(0)}+\frac{n}{n^{(0)}+n} \cdot \frac{\tau(\boldsymbol{x})}{n}$ and $n^{(n)}=n^{(0)}+n$

Canonical Conjugate Priors

Averaging property holds for all conjugate models (!)
$\left(x_{1}, \ldots, x_{n}\right)=x \stackrel{i i d}{\sim}$ canonical exponential family

$$
f(\boldsymbol{x} \mid \theta) \propto \exp \{\langle\psi, \tau(\boldsymbol{x})\rangle-n b(\psi)\} \quad[\psi \text { transformation of } \theta]
$$

(includes Binomial, Multinomial, Normal, Poisson, Exponential, ...)

- conjugate prior:

$$
f\left(\psi \mid n^{(0)}, y^{(0)}\right) \quad \propto \exp \left\{n^{(0)}\left[\left\langle\psi, y^{(0)}\right\rangle-b(\psi)\right]\right\}
$$

- (conjugate) posterior: $f\left(\psi \mid n^{(0)}, y^{(0)}, \boldsymbol{x}\right) \propto \exp \left\{n^{(n)}\left[\left\langle\psi, y^{(n)}\right\rangle-b(\psi)\right]\right\}$ where $y^{(n)}=\frac{n^{(0)}}{n^{(0)}+n} \cdot y^{(0)}+\frac{n}{n^{(0)}+n} \cdot \frac{\tau(\boldsymbol{x})}{n}$ and $n^{(n)}=n^{(0)}+n$
- $n^{(0)}$ determines spread and learning speed
- $y^{(0)}=$ prior expectation of $\tau(\boldsymbol{x}) / n$

Imprecise / Interval Probability

- Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?

Imprecise / Interval Probability

- Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?
- Prior $f(p)$ is a collection of probability statements:

$$
\int_{a}^{b} f(p) \mathrm{d} p=P(a \leq p \leq b)
$$

How can we express uncertainty about these probability statements?

Imprecise / Interval Probability

- Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?
- Prior $f(p)$ is a collection of probability statements:

$$
\int_{a}^{b} f(p) \mathrm{d} p=P(a \leq p \leq b)
$$

> How can we express uncertainty about these probability statements?

- Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on p.

Imprecise / Interval Probability

- Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?
- Prior $f(p)$ is a collection of probability statements:

$$
\int_{a}^{b} f(p) \mathrm{d} p=P(a \leq p \leq b)
$$

> How can we express uncertainty about these probability statements?

- Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on p.
- Separate uncertainty within the model (probability statements) from uncertainty about the model (how certain about statements)

Imprecise / Interval Probability

- Averaging property holds for all conjugate models (!) Can we mitigate this and still keep tractability?
- Prior $f(p)$ is a collection of probability statements:

$$
\int_{a}^{b} f(p) \mathrm{d} p=P(a \leq p \leq b)
$$

> How can we express uncertainty about these probability statements?

- Add imprecision as new modelling dimension: Sets of priors model uncertainty in probability statements and allow to better model partial or vague information on p.
- Separate uncertainty within the model (probability statements) from uncertainty about the model (how certain about statements)
- Can also be seen as systematic sensitivity analysis or robust Bayesian approach.

Sets of Prior Distributions

Uncertainty about probability statements

smaller sets = more precise probability statements

Lottery A

Number of winning tickets:
exactly known as 5 out of 100

- $P($ win $)=5 / 100$

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100

- $P($ win $)=[1 / 100,7 / 100]$

Sets of Prior Distributions

Uncertainty about probability statements

smaller sets = more precise probability statements

Lottery A

Number of winning tickets:
exactly known as 5 out of 100

- $P($ win $)=5 / 100$

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100

- $P($ win $)=[1 / 100,7 / 100]$

Let hyperparameters $\left(n^{(0)}, y^{(0)}\right)$ vary in a set $\Pi^{(0)}$ set of priors $\mathcal{M}^{(0)}$

Sets of Prior Distributions

Uncertainty about probability statements

smaller sets = more precise probability statements

Lottery A

Number of winning tickets:
exactly known as 5 out of 100

- $P($ win $)=5 / 100$

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100

- $P($ win $)=[1 / 100,7 / 100]$

Let hyperparameters $\left(n^{(0)}, y^{(0)}\right)$ vary in a set $\Pi^{(0)}>$ set of priors $\mathcal{M}^{(0)}$
Sets of priors \rightarrow sets of posteriors by updating element by element: the Generalized Bayes Rule (GBR Walley 1991) ensures coherence (a consistency property)

Sets of Prior Distributions

Uncertainty about probability statements

smaller sets = more precise probability statements

Lottery A

Number of winning tickets:
exactly known as 5 out of 100

- $P($ win $)=5 / 100$

Lottery B

Number of winning tickets: not exactly known, supposedly between 1 and 7 out of 100

- $P($ win $)=[1 / 100,7 / 100]$

Let hyperparameters $\left(n^{(0)}, y^{(0)}\right)$ vary in a set $\Pi^{(0)} \nabla$ set of priors $\mathcal{M}^{(0)}$
Sets of priors \rightarrow sets of posteriors by updating element by element: the Generalized Bayes Rule (GBR Walley 1991) ensures coherence (a consistency property)
Set of posteriors $\mathcal{M}^{(n)}$ via $\Pi^{(n)}=\left\{\left(n^{(n)}, y^{(n)}\right):\left(n^{(0)}, y^{(0)}\right) \in \Pi^{(0)}\right\}$ Bounds for inferences (point estimate, ...) by min/max over $\mathbb{I} \Pi^{(0)}$.

Imprecise BBM with $n^{(0)}$ fixed

IDM (Walley 1996); Quaeghebeur and de Cooman (2005)

no conflict:

prior $n^{(0)}=8, y^{(0)} \in[0.7,0.8]$
data $s / n=12 / 16=0.75$

Imprecise BBM with $n^{(0)}$ fixed

IDM (Walley 1996); Quaeghebeur and de Cooman (2005)

no conflict:

prior $n^{(0)}=8, y^{(0)} \in[0.7,0.8]$
data $s / n=12 / 16=0.75$
$n^{(n)}=24, y^{(n)} \in[0.73,0.77]$

TU/e

Imprecise BBM with $n^{(0)}$ fixed

IDM (Walley 1996); Quaeghebeur and de Cooman (2005)

no conflict:

prior $n^{(0)}=8, y^{(0)} \in[0.7,0.8]$
data $s / n=12 / 16=0.75$
$n^{(n)}=24, y^{(n)} \in[0.73,0.77]$
prior data conflict:
prior $n^{(0)}=8, y^{(0)} \in[0.2,0.3]$
data $s / n=16 / 16=1$

TU/e

Imprecise BBM with $n^{(0)}$ fixed

IDM (Walley 1996); Quaeghebeur and de Cooman (2005)

no conflict:

prior $n^{(0)}=8, y^{(0)} \in[0.7,0.8]$
data $s / n=12 / 16=0.75$
$n^{(n)}=24, y^{(n)} \in[0.73,0.77]$
prior data conflict:
prior $n^{(0)}=8, y^{(0)} \in[0.2,0.3]$
data $s / n=16 / 16=1$

TU/e

Imprecise BBM with $n^{(0)}$ interval

Walley (1991, §5.4.3); Walter and Augustin (2009); Walter (2013)

no conflict:

prior $n^{(0)} \in[4,8], y^{(0)} \in[0.7,0.8]$
data $s / n=12 / 16=0.75$

TU/e

Imprecise BBM with $n^{(0)}$ interval

Walley (1991, §5.4.3); Walter and Augustin (2009); Walter (2013)

no conflict:
prior $n^{(0)} \in[4,8], y^{(0)} \in[0.7,0.8]$
data $s / n=12 / 16=0.75$
$y^{(n)} \in[0.73,0.77]$

TU/e

Imprecise BBM with $n^{(0)}$ interval

Walley (1991, §5.4.3); Walter and Augustin (2009); Walter (2013)

no conflict:
prior $n^{(0)} \in[4,8], y^{(0)} \in[0.7,0.8]$
data $s / n=12 / 16=0.75$

$$
y^{(n)} \in[0.73,0.77]
$$

prior-data conflict:

prior $n^{(0)} \in[4,8], y^{(0)} \in[0.2,0.3]$
data $s / n=16 / 16=1$

TU/e

Imprecise BBM with $n^{(0)}$ interval

Walley (1991, §5.4.3); Walter and Augustin (2009); Walter (2013)

no conflict:

prior $n^{(0)} \in[4,8], y^{(0)} \in[0.7,0.8]$
data $s / n=12 / 16=0.75$

$$
y^{(n)} \in[0.73,0.77]
$$

prior-data conflict:
prior $n^{(0)} \in[4,8], y^{(0)} \in[0.2,0.3]$
data $s / n=16 / 16=1$

$$
y^{(n)} \in[0.73,0.86]
$$

Sets of Nonparametric Survival Functions

Item
Prior
Posterior
(joint work with Louis Aslett and Frank Coolen)

Example: Scaled Normal Data

Example: Scaled Normal Data

| Data: | $\boldsymbol{x} \mid \mu$ | $\sim \mathrm{N}(\mu, 1)$ |
| ---: | :--- | :--- | :--- |
| conjugate prior: | $\mu \mid n^{(0)}, y^{(0)}$ | $\sim \mathrm{N}\left(y^{(0)}, 1 / n^{(0)}\right)$ |
| posterior: | $\mu \mid n^{(n)}, y^{(n)} \sim \mathrm{N}\left(y^{(n)}, 1 / n^{(n)}\right) \quad(\tau(\boldsymbol{x}) / n=\bar{x})$ | |

Example: Scaled Normal Data

Set of priors: $\mathrm{y}^{(0)} \in[3 ; 4]$ and $\mathrm{n}^{(0)} \in[1 ; 25]$

Set of priors: $\mathrm{y}^{(0)} \in[3 ; 4]$ and $\mathrm{n}^{(0)} \in[1 ; 25]$

Set of posteriors: $\mathrm{y}^{(1)} \in[3.29 ; 4]$ and $\mathrm{n}^{(1)} \in[11 ; 35]$

Set of posteriors: $\mathrm{y}^{(1)} \in[4.43 ; 7.64]$ and $\mathrm{n}^{(1)} \in[11 ; 35]$

General Model Properties

Good inference properties (cf. other models based on sets of priors)

- $n \rightarrow \infty$

General Model Properties

Good inference properties (cf. other models based on sets of priors)

- $n \rightarrow \infty \vee y^{(n)}$ stretch in $\mathbb{\Pi}^{(n)} \rightarrow 0$

General Model Properties

Good inference properties (cf. other models based on sets of priors)

- $n \rightarrow \infty \vee y^{(n)}$ stretch in $\mathbb{\Pi}^{(n)} \rightarrow 0 \vee$ precise inferences

General Model Properties

Good inference properties (cf. other models based on sets of priors)

- $n \rightarrow \infty \vee y^{(n)}$ stretch in $\mathbb{\Pi} \mathbb{}^{(n)} \rightarrow 0$ precise inferences
- larger $n^{(0)}>$ larger $\mathbb{\Pi}^{(n)}>$ more vague inferences

General Model Properties

Good inference properties (cf. other models based on sets of priors)

- $n \rightarrow \infty \vee y^{(n)}$ stretch in $\mathbb{\Pi}^{(n)} \rightarrow 0$ precise inferences
- larger $n^{(0)}>$ larger $\mathbb{\Pi}^{(n)}>$ more vague inferences
- larger range of $y^{(0)}$ in $\mathbb{\Pi}^{(0)}>$ larger range of $y^{(n)}$ in $\mathbb{\Pi}^{(n)}$
- more vague inferences

General Model Properties

Good inference properties (cf. other models based on sets of priors)

- $n \rightarrow \infty \vee y^{(n)}$ stretch in $\mathbb{\Pi}^{(n)} \rightarrow 0$ precise inferences
- larger $n^{(0)}>$ larger $\Pi^{(n)}>$ more vague inferences
- larger range of $y^{(0)}$ in $\mathbb{\Pi}^{(0)}>$ larger range of $y^{(n)}$ in $\mathbb{\Pi}^{(n)}$
- more vague inferences

Model very easy to handle:

- Hyperparameter set $\mathbb{\Pi} \Gamma^{(0)}$ defines set of priors $\mathcal{M}^{(0)}$

General Model Properties

Good inference properties (cf. other models based on sets of priors)

- $n \rightarrow \infty \vee y^{(n)}$ stretch in $\mathbb{\Pi}^{(n)} \rightarrow 0 \vee$ precise inferences
- larger $n^{(0)}>$ larger $\mathbb{\Pi}^{(n)}>$ more vague inferences
- larger range of $y^{(0)}$ in $\mathbb{\Pi}^{(0)}>$ larger range of $y^{(n)}$ in $\mathbb{\Pi}^{(n)}$
- more vague inferences

Model very easy to handle:

- Hyperparameter set $\mathbb{\Pi} \mathbb{I}^{(0)}$ defines set of priors $\mathcal{M}^{(0)}$
- Hyperparameter set $\Pi \Pi^{(n)}$ defines set of posteriors $\mathcal{M}^{(n)}$

General Model Properties

Good inference properties (cf. other models based on sets of priors)

- $n \rightarrow \infty \vee y^{(n)}$ stretch in $\Pi^{(n)} \rightarrow 0$ precise inferences
- larger $n^{(0)}>$ larger $\mathbb{\Pi}^{(n)}$
- more vague inferences
- larger range of $y^{(0)}$ in $\mathbb{\Pi}^{(0)}>$ larger range of $y^{(n)}$ in $\mathbb{\Pi}^{(n)}$
- more vague inferences

Model very easy to handle:

- Hyperparameter set $\Pi \Pi^{(0)}$ defines set of priors $\mathcal{M}^{(0)}$
- Hyperparameter set $\mathbb{\Pi} \Pi^{(n)}$ defines set of posteriors $\mathcal{M}^{(n)}$
$-\mathbb{\Pi}^{(0)} \rightarrow \mathbb{\Pi}^{(n)}$ is easy: $n^{(n)}=n^{(0)}+n, y^{(n)}=\frac{n^{(0)}}{n^{(0)}+n} y^{(0)}+\frac{n}{n^{(0)}+n} \cdot \frac{\tau(\boldsymbol{x})}{n}$

General Model Properties

Good inference properties (cf. other models based on sets of priors)

- $n \rightarrow \infty \vee y^{(n)}$ stretch in $\mathbb{\Pi} \mathbb{}^{(n)} \rightarrow 0$ precise inferences
- larger $n^{(0)}>$ larger $\mathbb{\Pi}^{(n)}$
- more vague inferences
- larger range of $y^{(0)}$ in $\mathbb{\Pi}^{(0)}>$ larger range of $y^{(n)}$ in $\mathbb{\Pi}^{(n)}$
- more vague inferences

Model very easy to handle:

- Hyperparameter set $\Pi \Pi^{(0)}$ defines set of priors $\mathcal{M}^{(0)}$
- Hyperparameter set $\Pi^{(n)}$ defines set of posteriors $\mathcal{M}^{(n)}$
- $\mathbb{\Pi}^{(0)} \rightarrow \Pi^{(n)}$ is easy: $n^{(n)}=n^{(0)}+n, y^{(n)}=\frac{n^{(0)}}{n^{(0)}+n} y^{(0)}+\frac{n}{n^{(0)}+n} \cdot \frac{\tau(\boldsymbol{x})}{n}$
- Often, optimising over $\left(n^{(n)}, y^{(n)}\right) \in \Pi^{(n)}$ is also easy: closed form solution for $y^{(n)}=$ posterior 'guess' for $\frac{\tau(x)}{n}$ (think: \bar{x}) when $\mathbb{\Pi}^{(0)}$ has 'nice' shape

Hyperparameter Set Shapes

Hyperparameter Set Shapes

Hyperparameter Set Shapes

Hyperparameter Set Shapes

- Set shape is crucial modeling choice: trade-off between model complexity and model behaviour

Hyperparameter Set Shapes

- Set shape is crucial modeling choice: trade-off between model complexity and model behaviour
- $\Pi^{(0)}=n^{(0)} \times\left[y^{(0)}, \bar{y}^{(0)}\right]$ (Walley 1996; Quaeghebeur and de Cooman 2005): $\Pi^{(n)}=n^{(n)} \times\left[\underline{y}^{(n)}, \bar{y}^{(n)}\right] \triangleright$ optimise over $\left[\underline{y}^{(n)}, \bar{y}^{(n)}\right]$ only, but no prior-data conflict sensitivity

Hyperparameter Set Shapes

- Set shape is crucial modeling choice: trade-off between model complexity and model behaviour
- $\Pi^{(0)}=n^{(0)} \times\left[\underline{y}^{(0)}, \bar{y}^{(0)}\right]$ (Walley 1996; Quaeghebeur and de Cooman 2005): $\Pi^{(n)}=n^{(n)} \times\left[\underline{y}^{(n)}, \bar{y}^{(n)}\right] \triangleright$ optimise over $\left[\underline{y}^{(n)}, \bar{y}^{(n)}\right]$ only, but no prior-data conflict sensitivity
- $\Pi^{(0)}=\left[\underline{n}^{(0)}, \bar{n}^{(0)}\right] \times\left[\underline{y}^{(0)}, \bar{y}^{(0)}\right]$ (Walley 1991; Walter and Augustin 2009): $\mathbb{\Pi} \Pi^{(n)}$ have non-trivial forms (banana / spotlight), but prior-data conflict sensitivity and closed form for min / max $y^{(n)}$ over $\mathbb{\Pi} \Pi^{(n)}$. For other inferences, R package luck implements optimisation over $\mathbb{\Pi} \Pi^{(n)}$ via box-constraint optimisation over $\mathbb{\Pi} \Pi^{(0)}$

Hyperparameter Set Shapes

- Set shape is crucial modeling choice: trade-off between model complexity and model behaviour
- $\Pi^{(0)}=n^{(0)} \times\left[\underline{y}^{(0)}, \bar{y}^{(0)}\right]$ (Walley 1996; Quaeghebeur and de Cooman 2005): $\Pi^{(n)}=n^{(n)} \times\left[\underline{y}^{(n)}, \bar{y}^{(n)}\right] \triangleright$ optimise over $\left[\underline{y}^{(n)}, \bar{y}^{(n)}\right]$ only, but no prior-data conflict sensitivity
- $\Pi^{(0)}=\left[\underline{n}^{(0)}, \bar{n}^{(0)}\right] \times\left[\underline{y}^{(0)}, \bar{y}^{(0)}\right]$ (Walley 1991; Walter and Augustin 2009): $\Pi^{(n)}$ have non-trivial forms (banana / spotlight), but prior-data conflict sensitivity and closed form for min / max $y^{(n)}$ over $\mathbb{I}^{(n)}$. For other inferences, R package luck implements optimisation over $\mathbb{\Pi} \Pi^{(n)}$ via box-constraint optimisation over $\Pi \Pi^{(0)}$
- Other set shapes possible, but may be more difficult to handle

Hyperparameter Set Shapes

Parameter set shape for strong prior-data agreement (Walter 2013, A.2)

$n^{(0)}$

Hyperparameter Set Shapes

Parameter set shape for strong prior-data agreement (Walter 2013, A.2)

$n^{(0)}$

Summary

- Conjugate priors are a convenient tool for Bayesian inference but there are some pitfalls
- Hyperparameters $n^{(0)}, y^{(0)}$ are easy to interpret and elicit
- Averaging property makes calculations simple, but leads to inadequate model behaviour in case of prior-data conflict

Summary

- Conjugate priors are a convenient tool for Bayesian inference but there are some pitfalls
- Hyperparameters $n^{(0)}, y^{(0)}$ are easy to interpret and elicit
- Averaging property makes calculations simple, but leads to inadequate model behaviour in case of prior-data conflict
- Sets of conjugate priors maintain advantages \& mitigate issues
- Sets of posteriors adequately reflect vague prior information, the amount of data, and prior-data conflict
- Hyperparameter set shape is important
- Reasonable choice: rectangular $\mathbb{\Pi} \Pi^{(0)}=\left[\underline{n}^{(0)}, \bar{n}^{(0)}\right] \times\left[y^{(0)}, \bar{y}^{(0)}\right]$: "generalised iLUCK-models" (Walter and Augustin 2009; Walter 2013), R package luck (Walter and Krautenbacher 2013)
- Bounds for prior hyperparameters $\left(n^{(0)}, y^{(0)}\right)$ are easy to interpret and elicit
- Additional imprecison in case of prior-data conflict leads to cautious inferences if, and only if, caution is needed

References I

Evans, M. and H. Moshonov (2006). "Checking for Prior-Data
Conflict". In: Bayesian Analysis 1, pp. 893-914. URL:
http://projecteuclid.org/euclid.ba/1340370946.
Quaeghebeur, E. and G. de Cooman (2005). "Imprecise probability models for inference in exponential families". In: ISIPTA '05.
Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications. Ed. by F. Cozman, R. Nau, and T. Seidenfeld. Manno: SIPTA, pp. 287-296. URL:
http://leo.ugr.es/sipta/isipta05/proceedings/ papers/s019.pdf.
Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities.
London: Chapman and Hall.
Walley, P. (1996). "Inferences from multinomial data: Learning about a bag of marbles". In: Journal of the Royal Statistical Society, Series B 58.1, pp. 3-34.

References II

Walter, G. (2013). "Generalized Bayesian Inference under Prior-Data Conflict". PhD thesis. Department of Statistics, LMU Munich. URL: http://edoc.ub.uni-muenchen.de/17059/.
Walter, G. and T. Augustin (2009). "Imprecision and Prior-data Conflict in Generalized Bayesian Inference". In: Journal of Statistical Theory and Practice 3, pp. 255-271. DOI: 10.1080/15598608.2009.10411924.

Walter, G. and N. Krautenbacher (2013). luck: R package for Generalized iLUCK-models. URL:
http://luck.r-forge.r-project.org/.

Other models using sets of priors roo •botion

- Neighbourhood models
- set of distributions 'close to' a central distribution P_{0}
- common in robust Bayesian approaches
- example: ε-contamination class: $\left\{P: P=(1-\varepsilon) P_{0}+\varepsilon Q, Q \in Q\right\}$
- not necessarily closed under Bayesian updating
- Density ratio class / interval of measures
- set of distributions by bounds for the density function $f(\vartheta)$:

$$
\mathcal{M}_{l, u}=\left\{f(\theta): \exists c \in \mathbb{R}_{>0}: l(\theta) \leq c f(\theta) \leq u(\theta)\right\}
$$

- posterior set is bounded by updated $l(\theta)$ and $u(\theta)$
- $u(\theta) / l(\theta)$ is constant under updating
- size of the set does not decrease with n
- too vague posterior inferences

R package luck

- S4 implementation of the general canonical prior parameter structure with rectangular sets $\mathbb{\Pi} \Pi^{(0)}=\left[\underline{n}^{(0)}, \bar{n}^{(0)}\right] \times\left[y^{(0)}, \bar{y}^{(0)}\right]$
- lean subclasses for concrete sample distributions (currently implemented: scaled normal, exponential)
- available on R-Forge:

```
install.packages("luck",repos="http:
//R-Forge.R-project.org")
or
install.packages("http://download.r-forge.r-project.org/
src/contrib/luck_0.9.tar.gz",repos=NULL,type="source")
```


Strong Prior-Data Agreement Modelling

TU/e

