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s the crayfish still present?
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What to do with the crayfish?
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What to do with the crayfish?

Management C1: C2: C3:
alternative Cost Neg Accept-

Impact ance

Do nothing

Mechanical
removal

Add poison

C4: Loss is even worse if crayfish is

present after management
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A simple Bayesian analysis

O parameter of interest
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A simple Bayesian analysis
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A simple Bayesian analysis
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A simple Bayesian analysis
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The prior may matter — better get it right

Small sample size Large sample size
C:! - T
(8] : o . ||
_ — Eggtrenor @ — ngtreripr
a ©
i 1 X
B - 3 ey mean Z 2 gormean
S o | S T NN T 4 posterior mean g ¥ 4 posterior mean
- - o~ ;:I
] . RSN il YA itviinicfot= P S
S AN o O o e M e
I | =0 I I I | |
0.0 02 04 06 0.8 1.0 0.8 1.0




European Food Safety Authority

‘ F EK in risk and decision analysis

Quantitative risk models should be informed by systematically
reviewed scientific evidence, however, in practice empirical evidence

is often limited: in such cases it is necessary to turn to expert
= judgement.

Psychological research has shown that unaided expert judgement of
the quantities required for risk modelling - and particularly the

R W uncertainty associated with such judgements - is often biased, thus
LY limiting its value.

Accordingly methods have been developed for eliciting knowledge
from experts in as unbiased a manner as possible.

- https://www.efsa.europa.eu/en/press/news/140623
"Source: EFSA



Expert’s Knowledge Elicitation

* Aim to describe the Expert’s Knowledge
about one or more uncertain quantities in
probabilistic form

* j.e. a joint probability distribution for the
random variable in question

* EKE can be used to build priors
distributions or prior predictive
distributions

Uncertain
Judgements

Eliciting Experts’ Probabilities
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_]An Expert Knowledge Elicitation
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* Formulate the elicitation questions

_——* Ask experts about

* Probabilities

* Quantiles

* Probability intervals

* Moments or other descriptions of a probability distribution

—
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Direct methods for EKE

e Simple and a bit crude
* Intervals — Lower and Upper limits, then a Uniform distribution
» Triangular distributions — Mode, Lower and Upper limits

* Cumulative Density Function (CDF)
* Quartiles — 4 intervals, median and 25th and 75th percentiles
 Tertiles — 3 intervals with equal probability
* Probabilities/Hybrid — Choose probabilites and intervals

* Probability Density Function (PDF)
 Mode/Mean, percentiles, shape,...
* Place chips, draw it by hand...
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Indirect methods for EKE ©
(O

e Equivalent Prior Sample (EPS)

 What is the expected frequency of the event? °
 What is the size a sample that you imagine to have behind this estimate?

— =7 n=>7

* Hypothetical Future Sample (HFS)

* In a future sample of size 100 — in how many times has the event occured?

n =100 x =7

- | Ty Z

=\ s 1=

U
s

/y/“:ifﬂ;\-(\\

UNIVERSITY



Selection of Structured EKE Software

* EXCALIBUR (EXpert CALIBration): www.lighttwist.net/wp/excalibur

 ElicitN: www.downloadcollection.com/elicitn.htm

* SHELF (The SHeffield ELicitation Framework): www.tonyohagan.co.uk/shelf/

* MATCH Uncertainty Elicitation
Tool: optics.eee.nottingham.ac.uk/match/uncertainty.php#

e UncertWeb - The Elicitator: http://elicitator.uncertweb.org/

* Variogram elicitation: www.variogramelicitation.org

* Unicorn: www.lighttwist.net/wp/unicorn-download

cocosktE

EUROPEAN COOPERATION Source: http://www.expertsinuncertainty.net/Software/tabid/4149/Default.aspx
IN SCIENCE AND TECHNOLOGY
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An example
— elicit the probability of the crayfish
individuals to survive the winter

 The SHELF R-package

* A web-interface for the SHELF R-package:
optics.eee.nottingham.ac.uk/match/uncertainty.php#

 Roulette
e Quartiles
e Tertile


http://optics.eee.nottingham.ac.uk/match/uncertainty.php
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Pshycological factors and elicitation

* Anchoring and adjustment

. T THIANKING, Uncertain
Availability H/\r% Judgements
e Ran ge_frequency compromi se EAST s SL@W Eliciting Experts’ Probabilities
* Representativeness and baseline e b ﬂ)
neglect e
DANIEL e

e Conjuction fallacy

KAHNEMAN [ 12

IN ECONOMICS

* The law of small numbers
e Overconfidence




Elicitation with multiple experts

* Psychological factors when working with several experts

* Behavioural aggregation
* Group elicitation
* One or several iterations, individually and in group

 Mathematical aggregation
* Treat each expert’s distribution as data and update the decision maker’s belief
* Pooled opinions — linear or logarithmic pooling
* Calibrate experts and weight according to their performance
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]Alternative protocols for EKE
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* the Sheffield protocol with group interaction of experts,
consensus distributions

* the Cooke protocol with use of seed questions for the calibration
of experts, no interaction

* a Delphi protocol on written expert elicitation with feedback
loops, anonymous sharing of the results between iterations

LUND
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An example
— elicit the probability of the crayfish
individuals to survive the winter
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An example
— elicit the probability of the crayfish
individuals to survive the winter

expert A
Beta( 217, 6)
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expert A expert B
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CDF
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European Food Safety Authorit

‘FTrain the experts in making probabilistic
W judgments
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* Get them custom to use probability density functions as a device for
— representing subjective uncertainty

ey

W= Clarify what is needed for the assessment, what are the uncertain
guantities and how they are used to assess risk

|« Reassure the experts understand that they will not be expected to
claim certainty they do not have

0 "N.,'.
&Y  * Encourage experts to be honest

| * Give the experts a practice elicitation exercise

.« Discuss psychological biases
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i The benefit of quantifying uncertainty using
& pro bability

e Xis the proportion surviving the first spray

X is small and Y is small, what is then XY?
What does "small” mean?




i The benefit of quantifying uncertainty using
& pro bability

e Xis the proportion surviving the first spray

X and Y without uncertainty result in a single value of of XY
A false sense of security




* Xis the proportion surviving the first spray

~_——* Yis the proportion surviving the second spray

.
— -

4° Proportion surviving both applications is XY

Plug in estimates — Consider uncertainty
no uncertainty in inputs

E(X) = 2% X ~ U(0,4%)

Using point estimates in
input can result in biased
estimate of overall risk  E(Y)=2% Y ~ U(0,4%)

XY = E(X)E(Y) = 0.04% E(XY) = 0.053



Aleatory and epistemic uncertainty

Uncertainty in Scientific Assessment

Distribution Distribution T
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Figure 2: Illustration of the distinction between uncertainty and variability (left and central graphs),

and that both can affect the same quantity (right hand graph).

UNIVERSITY



