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Bayesian [Belief] Networks

* A BN is a graphical model (graph) with nodes representing random
variables and edges representing probabilistic dependencies.

* BNs enable us to model uncertain events.

* BNs provide an intuitive visual representation of assumptions or reasoning
hidden in the head of an expert.

* BNs allow us to apply the laws of probability and Bayes rule to propagate
consistently the impact of evidence on the probabilities of uncertain
outcomes (i.e. to revise the probabilities in light of evidence).

* ABN can be made as an influence d_iagram which depicts the logical or
causal relations among factors that influence the likelihood of outcome
states of some parameter(s) of interest.

* A BN can be used to find Bayes optimal decisions
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A BN is a graph

Sprinkler I- Rain

Grass
wet

* Let X be a set of random variables
= A probabilistic graphical model consists of:
" Nodes V corresponding to variables in X

= Edges E revealing conditional
independencies

= A graph G = (V,E)
* Probability distributions over V and E:
" Parameters: ©



A BN is a graph with probabilistic links

* A graphical probability model for
P(SPRINKLER, RAIN, GRASS WET)

RAIN

SPRINKLER ‘Rh_n;> —'—. oTz oF,e ¢ NOdeS V = {S, R, G}
P + Edges E = {P(R), P(S|R), P(G|S,R)}
n~/ﬂ * Parameters 8 = "the elements in the
f I ] s probability tables”




A BN is a Directed Acyclic Graph

* The DAG express causal relations

PEIR) PIR) * The DAG helps us to decompose the
T " D { - joint probability distribution of all
ks / nodes together

<??AEV—E?;?ASS\’IET ° P(GIS'R) = P(G | SIR).P(Sl R)'P(R)
p(GlS’R) SPRINKLER RAIN) T F
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Serial connection




Converging and divering connections



The marbled crayfish in Arbogaan

" Nov 2012: Individuals found in the Arboga river

Aqua reports 2013:17

Marmorkraftan i Marstaan
Riskanalys och atgardsférslag

® Seven individuals were removed from the site
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= Winter 12/13 was very cold

Sveriges lantbruksuniversitet
SLU | swedieh Urivecsity of Agricutturs Sciences
Instituti

" Removing any individuals left 2013 is urgent!

" Trial fishing performed during summer 2013 did not find any
individuals

" |s the crayfish still present in the system?
» What should be done?
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s the crayfish still present?

H
Present / Absent A ¢
Absent 1—-06
‘ H
Observed / Not observed E Present Absent
Observed a 0
Not observed 1—«a 1




s the crayfish still present?

P(H) = 0.23
H
Present / Absent ATEEEI: &
Absent 1—-06
P(E|H) = 0.3
Observed / Not observed E Present Absent
Observed a 0
(1 —a)b Not observed 1—a 1

P(H|not E) =

1—ab

P(H|not E) =0.15




Build a network, update belief, generate a
sample of predictions

* Draw the nodes

* Define the state of nodes

* Draw the directed edges (arrows)

* Populate the probability tables (add values, sum to one, elicitation tools)
e Configure the graph by instantiating nodes with hard evidence

e Update beliefs (F5)

* Note the belief (marginal probability distribution) of endpoint (what to
predict)

* Generate data file —sample from the marginal, bias samples on existing
evidence

UNIVERSITY



A BN help us to revise our belief in light of
new evidence

* Hard Evidence (instantiation) for node X is when the state of node X is
definitely known

* Soft Evidence for node X is any evidence that enables us to update
the prior probability values for the states of X

* Evidence is implemented as a configuration of the graph

 What is the probability that the crayfish is present if we did not
observe any individuals?
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BNs can be large networks

Farm dev/mitigation <&

| Border to Spray

Irrigable Area ) Land Scenario
| Waiau New Abstraction | f

Huru Abstraction

| L Sumner Storage

| Mandamus Dam Huru Flush Freq

| Pahau Dam |

/ \ \(Trib NO3 Tox OK )
( Trib Av DIN \

Water source options
Sqll ] pUB J81empunols)

— Huru Channel Form
| sth branch Dam N (Trib Av DRP )
Salmon Spawn OK (Chan;g Encroach )
Waitohi Dam V\
I l ‘ CH2 E. coli Risk ) CH2 DRP
1
|

1 CH2 DIN
| Low Flow Limit ..‘_—_-—-‘ Smon Passage OK ‘
River ’ , T

values (Salmon OK) (CNat Character OK) ((Wading Birds OK) ((CH2 Swim OK )y CH2 Algae OK )-»{ CH2 QMCI>5 )

Fig. 2. Conceptual model of linkages between water-source and farm-development options, and stakeholder socioeconomic and
environmental values. Rectangles (BN decision nodes) represent management actions and attributes in ellipses (BN nature nodes)
respond to changes in actions.
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BNs can be large networks
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Bayesian principles to
learn and make
predictions UNCERTAINTY

A recapitulation

UNDERSTANDING




Conditioning

* K is our knowledge bases right now*
* P(A[K)

* Eis a new piece of evidence, e.g. a
weather forecast

« P(A|E & K)

* The model is also part of the knowledge bases



Conditional versus unconditional probability

P(rain tomorrow) LLL BE. IN YOUR CITY TOMORROL
. - h - od tod IF YOU LIANT TO HANG OUT.
P(rain tomorrow|it has rained today) BUT LIHERE WILLYOU BE IF
I DONT UPNTTo HANG OUT?!
You KNOW, T J0sT
P(rain|K,) —
P(rain|K,)
Kj' y
2 LWHY T TRy NoT 10 BE

PEDANTIC ABOUT CONDITIONALS,



Independence

Event A is independent of E given K if
P(A|K) = P(A|E & K)

or (dropping the condition on
knowledge bases)

P(A) = P(A[E)

By symmetry
P(E) = P(E]A)
and
P(A & E) = P(A)P(E)



More probability rules

Addition rule
P(A or E) =P(A) + P(E) — P(A & E)

E0

Multiplication rule
P(A & E) = P(A|E)P(E)

Transposed conditionals or inverse
conditional probability

Learning is an inverse problem
How to go from one to the other?



Learning

What we believe to begin with: What we believe after evidence E is acquired:
P(A|K) —? P(A|E&K)
P(A) How to learn: P(A|E)
Bayes rule:
P(E[A)P(A)
P(AJE) =
P(E)

P(E|A) is how likely it is to get E if A is true



Cromwell’s rule

What happens
if P(F)=0

Bayes rule:
P(F|E) = P(E|F)P(F) / P(E)

"Think it possible you may be mistaken”

You should not have probability 1 (or 0) for any event, other
than one demonstrated by logic!

i.e. 0<P(E|K)< 1
but P(E|K) =1 if and only if K logically implies the truth of E



Back to the BNs and assessing
risk and impacts



Assessing risk and impacts

BNs support models

" Data-driven — learn parameters
from data

" Expert-driven — parameters are
assigned by experts

= Combinations of these (Hybrid
approach)




The underlying theory

* Causal relationsships
* Mechansisms

* Processes - dynamics, time,
space

Expert
knowledge

 Directed Acyclic Graph

* Functions — determinstic
links

* Assumptions



Expert knowledge — yes you are allowed to
use that — but do it right!

Uncertain
Judgements

Eliciting Experts’ Probabilities




An expert driven BN — classify invasiveness

A — Competitive ability in natural vegetation
B — Population density

C — Realized dispersal capacity

D — Hybridization and gene flow to “native” (old) relatives
E — Time since introduction ‘

F — Distance to native range

UNIVERSITY
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An expert driven BN — classify invasiveness

Conditional Probabilities

m NOT INV mINV

1 2 3 4

Score on attribute A
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An expert driven BN — classify invasiveness

* What to do if the expert is
uncertain about hes belief?

 What if different experts
disagree?

* Is there a way to do this to
avoid common errors?

* Structured approach to
Expert’s Knowledge Elicitation

* Train the experts
e Use real experts




Make predictions for a few number of cases

* Importing case records from a data file cases...
* Mark all, Data -> Copy cases

* Open case manager

* Click on a case and Apply it

* Update the BN (F5)

 Study the bargraph of the Risk_Class Node

UNIVERSITY



*A bit non-obvious way to do it when there is lots of cases

Make predictions*

* Open score file

e Data -> validate

 Set the Risk class as fixed node

e Assign a file to save as output

* Open the output file and use the marginal probabilities

LUND

UNIVERSITY



Learn from data — nice but beware of pitfalls

* Populate the network with
probability distributions for
parent nodes and conditional
probability tables for child nodes

Expert using relative frequencies in data

knowledge

* Weithing in prior probabilities
* Straightforward




Dirichlet distribution

Dir(«a)

. Support

7 € (0,1) and z

. Parameters

a ={ay,..,agtand a; > 0

* Mean:

Cry
~
<
—
|

Marginal distribution:

Beta distribution X;~Beta(a;, (Z’f]a ) — aj)
k

* Sometimes one use s - {t4, ..., tx} instead of «

far} =1

{ak} =10



Useful finding

* “The Dirichlet distribution form a conjugate family under multinomial
sampling”

e Using Dir as prior for our belief in O the posterior distribution is also
Dir and easy to calculate

* This is true when the data is the result of n independent trials in
which each trial result in one out of a fixed number of outcomes, e.g.
outcome j occurs n; times

S—>n-+s
n; + Stj

tj>

n+s



Learning parameters™® from data

* Load data file with configurations
e Learn parameters (set confidence weight on data)

LLUND

*It is also possible to learn structure from data KRS | Tr



Learning parameters from data

e Open training data file cancer_trainingdata.txt
e Select Data - > learn parameters

* Set confidence to 0 and tick uniformize (priors are uniform but
learning only considers data)

* Set confidence to 1 and tick uniformize (priors are uniform and has
low weight compared to data when learning)

* Repeat with cancer_trainingdata_small.txt

| \ 7
o v |\
|z
L/2
» />‘
o~ 1666 -,
/,(\;rr:l_,‘(\\
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Confusion matrix

Predicted condition

True condition Cancer Not cancer
Cancer TP FN
type Il error
Not cancer jii TN
type | error




Validate a BN

* Load data file with configurations

* Validate
* Test only
* Leave-one-out
» K-fold cross validation

e Validation metrics

* Accuracy
e Confusion matrix
* ROC curve
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