

Lundaloppet Predictive Challenge

Ullrika Sahlin PhD

Lund University Centre of
Environmental and Climate Research

$$
\text { May } 2014
$$

By stating the uncertanty in you prediction I can now that it missed including the outcome that acutally ocurred..

The participants were given this task:

You can use any kind of way to express your "guesstimate". For example an interval (e.g. between 20 and 30 minutes with 90% confidence),
a Normal distribution (e.g. time will be around a mean of 25 with a standard deviation of 5),
a sample of times that you think are possible (e.g. 20, $15,22,30$) or
(for those of you who are unsure if you will complete the race) a mixing distribution (say there is a 20% chance that I will not take part and if I do, I will run for between 15 and 25 minutes).

Results

17 respondents

Results in the predictive challenge

- Accurate or not accurate prediction
- Most accurate prediction
- Most precise prediction
- Most safe prediction
- Most pessimistic and optimistic predictions
- Most unexpected failure

Method

- Time to run is a continous variable time >=0
- Distribution determined by its density function f(time)
- Expected value
- Confidence interval
- Likelihood

Method

- Time to run is a continous variable time >=0
- Distribution determined by its density function f(time)
- Expected value
- Confidence intervals
- Likelihood

Different interpretations of the confidence interval

Frequentist:

In repeated sampling 90\% of the derived intervals will cover the true parameter value

Bayesian:

With these data, the parameter value is inside the interval with 90% probability

Distribution of Parameter
ค

Stolen from Casella
http://www.stat.ufl.edu/archived/casella/Talks/BayesRefresher.pdf

- Time to run is a continous variable time >= 0
- Distribution determined by its density function f(time)
- Expected value
- Confidence intervals
- Likelihood

- Accurate - if inside 95th confidence interval
- Most accurate prediction - highest likelihood
- Most precise prediction - smallest 95th confidence interval
- Most safe prediction - widest 95th confidence interval
- Most pessimistic and optimistic predictions largest positive and negative difference to the expected value
- Most unexpected failure - my own judgment

Between 42 and 46 min with 95% confidence (large uncertainty since I haven't decided whether to go on full speed - I will run the Gbg half marathon next week and need to be in shape for that.

The Normals

Normal

The Normals

The Normals

Normal

The Normal mixtures

The Uniformists (explicit or implicit)

The Uniformists (explicit or implicit)

The Uniformists (explicit or understated)

The Uniform mixtures

The Uniform mixtures

A process example

Precise or safe

The highest likelihood award

Who was accurate?

Mr and Mrs bias

difference to mean

The precision award and the least risk

Predictivity
Sample -based

useful plots: observed versus predicted and empirical coverage

Empirical coverage

Observed versus predicted

Sample
speed km/min
-based

This is how the observed versus predicted plot looks
for the 17
respondents. The one to the left ran but did not provide any observation

[^0]
Failures, errors and black swans

- The uniformists - Why use a uniform distribution (or an interval) and risk being outside?

Most incomplete prediction award

- Anon-Estimated the time with her mobile phone - different precision in the measurements. Measurement error is unknown, but manageable

- Rebecca - Did not finalize the race. Is this an event to consider. All I know is that time for Rebecca >0.

Most partially observable award

- Paul - Made his prediction but missed to sign up for the race. Did not run. Most unexpected event.

The black
swan award

[^0]: observation

