

Lundaloppet Predictive Challenge

Ullrika Sahlin PhD Lund University Centre of Environmental and Climate Research May 2014

If you make a prediction as a single value...

...I cannot know if it was good or bad when I eventually get to know the outcome

By stating the uncertanty in you prediction I can now that it missed including the outcome that acutally ocurred..

..or that you actually were accurate in you assessment.

The participants were given this task:

You can use any kind of way to express your "guesstimate". For example

- an interval (e.g. between 20 and 30 minutes with 90% confidence),
- a Normal distribution (e.g. time will be around a mean of 25 with a standard deviation of 5),
- a sample of times that you think are possible (e.g. 20, 15,22, 30) or
- (for those of you who are unsure if you will complete the race) a mixing distribution (say there is a 20% chance that I will not take part and if I do, I will run for between 15 and 25 minutes).

Results in the predictive challenge

- Accurate or not accurate prediction
- Most accurate prediction
- Most precise prediction
- Most safe prediction
- Most pessimistic and optimistic predictions
- Most unexpected failure

Method

- Time to run is a continous variable time >= 0
- Distribution determined by its density function f(time)
- Expected value
- Confidence interval
- Likelihood

Method

- Time to run is a continous variable time >= 0
- Distribution determined by its density function f(time)
- Expected value
- Confidence intervals
- Likelihood

Different interpretations of the confidence interval

Frequentist:

In repeated sampling 90% of the derived intervals will cover the true parameter value

Bayesian:

With these data, the parameter value is inside the interval with 90% probability

Stolen from Casella http://www.stat.ufl.edu/archived/casella/Talks/BayesRefresher.pdf

Method

Here are the measuring instruments I used to describe predictions and how good they were

- Time to run is a continous variable time >= 0
- Distribution determined by its density function f(time)
- Expected value
- Confidence intervals
- Likelihood

Results

These are the rules set up to evaluate the winners in the different categories

- Accurate if inside 95th confidence interval
- Most accurate prediction highest likelihood
- Most precise prediction smallest 95th confidence interval
- Most safe prediction widest 95th confidence interval
- Most pessimistic and optimistic predictions largest positive and negative difference to the expected value
- Most unexpected failure my own judgment

Between 42 and 46 min with 95% confidence (large uncertainty since I haven't decided whether to go on full <u>speed - I will</u> run the Gbg half marathon next week and need to be in shape for that.

The Normals

The Normals

The Normals

The Normal mixtures

The Uniformists (explicit or implicit)

The Uniformists (explicit or implicit)

The Uniformists (explicit or understated)

The Uniform mixtures

The Uniform mixtures

A process example

Precise or safe

The highest likelihood award

Mr and Mrs bias

Observed versus predicted

Some final awards to hand out

Failures, errors and black swans

- The uniformists Why use a uniform distribution (or an interval) and risk being outside?
 Most incomplete prediction award
- Anon –Estimated the time with her mobile phone – different precision in the measurements.
 Measurement error is unknown, but manageable.
- Rebecca Did not finalize the race. Is this an event to consider. All I know is that time for Rebecca > 0.
- Paul Made his prediction but missed to sign up for the race. Did not run. Most unexpected event.

